Technical Catalogue 2018/2019

thager

The reliable partner for intelligent solutions.

There's plent

 plenty to do. Let's get started.The time for renovated electrical installations and intelligent solutions is now.

Dear friends and partners,

We all value experience. Routine helps us to be fast and reliable, which can save us time, money and hard work. Yet there are also moments when we need to leave the familiar behind and take advantage of golden opportunities just waiting to be discovered and seized.

This is one of those moments.

Renewable energy sources and innovative building technologies are creating opportunities to make more intelligent and energy-efficient homes. And with our Ambient Assisted Living (AAL) solutions, we will be able to help older people and those who require special care to live safely and independently in the future.

The latest studies indicate that many properties will first have to be adapted to accommodate the solar power systems, energy storage units and intelligent building controls that characterise smart homes. As of 2014, 15.3 million UK homes could benefit from improvements to aid in energy-efficient living and working. Large-scale renovation and modernisation are needed if renewable energy is to help achieve an 80 percent cut in the UK's carbon emissions by 2050.

This work requires specialists. There's plenty to do. Let's get started.
We at Hager Group will support you with the very best products, solutions and services. And we are constantly evolving and improving: we have more than 800 team members working on better products and innovative technologies to make your work easier and your customers' lives more comfortable. At the same time, we are increasing our focus on services so that we can provide you and your customers with expert support.

When it comes to change, we practise what we preach. And we rely on expert partners like you to help us set the trends for the future. This future is starting right now, and I'm looking forward to shaping it with you.

Yours sincerely,

[^0]
Under one roof

Members of Hagetr Group

:hager

ELCOM.

DAITEM

diog̣ral

EFEN (ㄷ)

One family

The world is changing, and we are changing with it. As a family company, we have grown steadily over the last sixty years to become a reliable partner to expert technicians and electrical wholesalers around the world. All while remaining true to ourselves and to our values. And so we continue today, with a number of well-known brands - each with their own distinctive strengths working together under the Hager Group umbrella.

Your trust

As a partner and customer, you can choose from the entire range of products and services offered by every member of our brand family. Our new corporate image highlights our shared strengths even more clearly. From now on, each of our brands will be easily recognisable as a 'Member of Hager Group'. The new corporate image also involves some colour and design changes. Our core promise remains the same: we will always work with you to succeed together.

Our strengths

We have huge opportunities ahead. The upcoming modernisation of existing buildings, intelligent building technology, digital services, new energy sources and technologies - all of this opens up new, exciting potential for you and for us. At the same time, business requirements are becoming more and more complex. That's why it's so important for you to have Hager Group specialists supporting you with all of their expertise. Together, we are stronger. Together, we will overcome the complex challenges of our time with simple, impressive solutions - just as we have been doing for the last six decades.

Global warming, a shortage of natural resources, social cohesion and the transition to renewable energy: there are many challenges facing businesses and society today. Hager Group is pursuing a variety of initiatives to promote sustainable development with its "E3" approach.

We work continuously to reduce our carbon footprint.
Our priorities include optimising the transport of our products and cutting the amount of energy we use in production to further reduce our Carbon footprint.

E for Ethics

We need skilled, motivated and healthy employees in order to offer our customers the best services and products. That's why we provide all our team members with a safe, healthy working environment, support their professional growth and offer them opportunities for further development. We also promote diversity and adherence to an Ethics Code throughout the company.

E for Energy

Hager Group helps its customers to save energy intelligently.
We also analyse and optimise our products' environmental performance throughout development and production. By providing a detailed environmental profile for most of our products, we can be fully transparent with our customers and ourselves.

Technology as a friend

Hager Design turns technical products into familiar friends.

Before we start designing a new product, we think about the people it is going to serve. Will it assist or entertain, observe or protect, save time or save energy? Ideally, whatever it does, users will feel it is a reliable 'friend'. We need to know how to connect with people on an emotional level, to ensure that in return they feel connected to our products.

Technology for people

Responsible design builds on an ethical foundation. At Hager, this foundation is all about respecting people and caring about their well-being. And it's not just about today - we want to inspire our customers for years to come. That's why we include them in every stage of the design process from installer to planner, to end user.

An honest brand

Hager products are world-renowned for their quality, which is visibly and tangibly unveiled in their design. The unmistakeable, explicit and clear brand image tells customers straight away that these products are part of 'the family'. This is our signature, the Hager DNA, which embodies two central principles.

Friendly, serene, balanced

An honest, authentic design that blends naturally into everyday life, without gadgets or cheap effects.

Erwin van Handenhoven
Hager Group Design Director

Ingeniously simple

Our products are important, but never over-the-top. If it's not necessary, we leave it out. The essence remains. Straightforward in both form and function: simple to install, simple to use. Simply Hager!

Looking ahead to the future

Hager systems are not stagnant - they are expanding, gaining more and more visibility in our customer's homes. This has implications for our present design language. We call it 'New Start'. The aim of New Start is to meet our customers where they are, and carry them with us into the future: with innovative ideas, new designs and expressive materials. The new Hager catalogue is full of 'New Starters' - along with lots of 'old friends'. Come and explore!

01 Distribution boards

novello ${ }^{+}$range / Metal plug \& socket outlet accessory / Panel boards system
\qquad

02 Enclosures
golf / vector / Bus bars and terminals
\qquad

03 Protection and switching devices
hlu ACBs / 国 MCCBs-Moulded Case Circuit Breakers / Manual chanegover switches / Automatic transfer switches / ACCL / Switch disconnectors /
Changeover switches

04 Protection devices

楽 MCBs / RCCBs / RCBOs / Accessories / Earth Leakage Relays / SPDs /
HRC Fuses and Fuse carriers

06 Controls and signaling

Current transformers / Selector switches / Bells \& Buzzers / Contactors /
Latching Relays

07 Energy and lighting control

Time switches / Twilight switches / Presence \& movement detectors / LED Floodlight / Dimmers / Energy meters / Time lag switch / Energy meters
Indicator lights / Pushbuttons / Analogue voltmeters and ammeters /
08 Wiring accessories
insysta ${ }^{\text {TM }}$

09 Catalogue references index

Distribution boards

welcome to novello+ ${ }^{+}$ distribution boards section

novello ${ }^{+}$range of distribution boards are much more than enclosures. They incorporate new dimensions of protection for safety and convenience.

01	Page
SPN distribution boards	20
TPN distribution boards	21
TPN horizontal PPI distribution boards	22
TPN tier type PPI distribution boards	23
TPN vertical distribution boards	24
TPN phase segregated distribution boards	27
TPN phase selector distribution boards	28
Flexi distribution boards	29
Enclosures	30
Plug \& socket outlets	31
Metal plug \& socket outlet	31
Cable end boxes for novello DBs	32
VTPN Panel boards	54

novello ${ }^{+}$ distribution boards

Absolute benchmark! The new age distribution boards with greater convenience and impressive aesthetics.

Advantages for you:

- Quick \& easy to install
- Additional safety for human protection
- Exceptional aesthetics
- Wide range to suit all applications

Technical data:

- Single Door: IP30 / Double Door: IP43 \& IP54
- As per IS 8623 - III
- Protection against mechanical impact IK09
- Plain \& Acrylic doors
- RAL 9010
- Standard Accessories:
-- Wires sets
-- Insulated bus bars
-- Insulated neutral bars \& earth bar
-- blanking plates, Cable management system
-- Circuit identification labels

Expert tips

01

Patented gland plate locking system with minimal screws

Patented IP2X neutral terminals with flexibility to position it on the chassis

03

Spirit level to ensure accurate \& professional alignment of wall box

Double packaging for door protection until installation is complete

Lab certified IP43 protection in double door versions. Archived by dual neoprene gasket between door, frame \& wall box

08
Star washers for earthing

Business card holder to retain electrician/ maintenance contact information for future use

Site upgradable door handle with key lock facility

novello ${ }^{+}$ distribution boards

Absolute benchmark! The new age distribution boards with greater convenience and impressive aesthetics.

Advantages for you:

- Professional alignment with spirit level
- Reusable \& flexible cable management
- Better protection with unique door packaging
- Upgrade to lockable enclosures possible

Technical data:

- Single Door: IP30 / Double Door: IP43 \& IP54
- As per IS 8623 - III
- Protection against mechanical impact IK09
- Plain \& Acrylic doors
- RAL 9010
- Standard Accessories:
-- Wires sets
-- Insulated bus bars
-- Insulated neutral bars \& earth bar
-- blanking plates, Cable management system
-- Circuit identification labels

Expert tips

13
Convenient 180 degree door opening

10

Anti wall insertion marking

14

Reusable cable management kit

SPN distribution boards

Description

- Metal DBs for single phase \& neutral (SPN) supply distribution

Technical data

- Conforms to IS 8623-III
- No. of modules - 4, 6, 8, 12, 16, 18 way
- Mounting - Surface / flush mounting
- IP category
-- IP30 for single door
-- IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

- Incoming : Two pole MCBs / RCBOs / RCCB / Isolator
- Outgoing : SP MCBs

Features \& benefits

- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate
- Patented IP2X Neutral terminal
- Cement spill protection
- Pozidrive screws for easy removal
- Anti wall insertion marking
- 100A tin plated insulated copper bus-bar
-180° door opening
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Blanking plates and circuit identification labels
- Cable management system

VYS12C

VYS12D

IP30 - Single Door

Description	Total No. of Modules	Cat. Ref. 6 way
8 way	6	8
VYSO6C		

IP43 - Double Door : Plain

Description	Total No. of Modules	Cat. Ref.
4 way	4	VYSO4D
6 way	6	VYS06D
8 way	8	VYS08D
12 way	12	VYS12D
16 way	16	VYS16D
18 way	18	VYS18D

IP43 Double Door-Acrylic / Glazed

Description	Total No. of Modules	Cat. Ref.
4 way	4	VYSO4G
6 way	6	VYS06G
8 way	8	VYS08G
12 way	12	VYS12G
16 way	16	VYS16G
18 way	18	VYS18G

IP54 Double Door-Plain

Description	Total No. of Modules	Cat. Ref.
4 way	4	VYSO4P
6 way	6	VYSO6P
8 way	8	VYS08P
12 way	12	VYS12P

Pre-wired and TV telephone DBs available on request.
For price and technical information, please contact your nearest Hager sales office.

Distribution boards

novello ${ }^{+}$

TPN distribution boards

Description

- Metal DBs for three phase \& neutral (TPN) supply distribution

Technical data

- Conforms to IS 8623-III
- No. of modules - 4 way to 16 way
- Mounting - Surface / flush mounting
- IP category
-- IP30 for single door
-- IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

- Incoming : Four pole MCBs / RCCBs / RCBOs / Isolator
- Outgoing : SP MCBs

Features \& benefits

- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate
- Patented IP2X Neutral terminal
- Cement spill protection
- Handle with lock provision
- Pozidrive screws for easy removal
- Anti wall insertion marking
-100A tin plated insulated copper bus-bar
- 180° door opening
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
-Blanking plates and circuit identification labels
- Cable management system
- Spirit level (for DBs above 8 Way TPN

* DBs with provision for 4 module incomer, other DBs have provision for 8 module incomer.

Pre-wired and TV telephone DBs available on request.
For price and technical information, please contact your nearest Hager sales office.

TPN horizontal PPI distribution boards

Description

- Metal DBs for three phase \& neutral (TPN) supply distribution with (PPI) per phase isolation

Technical data

- Conforms to IS 8623-III
- No. of modules - $4+2$ way to $12+2$ way
- Mounting - Surface / flush mounting
- IP category - IP43 / 54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

- Incoming : Four pole MCBs / RCCBs / RCBOs / Isolator
- Sub incomer : 2 Pole MCBs RCCBs / RCBOs
- Outgoing : SP MCBs

Features \& benefits

- Provision to mount 2P RCCBs / RCBOs / MCBs in each phase as sub-incomer
- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate
- Neutral link with protection cover
- Cement spill protection
- Handle with lock provision
- Pozidrive screws for easy removal
- Anti wall insertion marking
- 100A tin plated insulated copper bus-bar
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Cable ties, cable tie holder, blanking plates and circuit identification labels
- Spirit level
\qquad

VYH06DH

VYH06GH

IP43 Double Door

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$8+6+12$	VYH04DH
6 way	$8+6+18$	VYH06DH
8 way	$8+6+24$	VYH08DH
12 way	$8+6+36$	VYH12DH

IP43 Double Door-Acrylic / Glazed

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$8+6+12$	VYH04GH
6 way	$8+6+18$	VYH06GH
8 way	$8+6+24$	VYH08GH
12 way	$8+6+36$	VYH12GH

IP54 Double Door-Plain

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$8+6+12$	VYH04PH
6 way	$8+6+18$	VYH06PH
8 way	$8+6+24$	VYH08PH
12 way	$8+6+36$	VYH12PH

TPN tier PPI distribution boards

Description

- Metal DBs for three phase \& neutral (TPN) supply distribution with (PPI) per phase isolation

Technical data

- Conforms to IS 8623-III
- No. of modules - $6+2$ way to 16+2 way
- Mounting - Surface / flush mounting
- IP category - IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

- Incoming : Four pole MCBs / RCCBs / RCBOs / Isolator and option of h3 type

MCCBs upto 160A as incomer in $12+2$ way* Tier PPI DB

- Sub incomer : 2 Pole MCB / RCCB / RCBO
- Outgoing : SP MCBs

Features \& benefits
-Provision to mount 2P MCB / RCCB / RCBOs in each phase as sub-incomer

- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate
- Neutral link with protection cover
- Cement spill protection
- Handle with lock provision
- Pozidrive screws for easy removal
- Anti wall insertion marking
- 100A tin plated insulated copper bus-bar

Choice of plain and acrylic door

- Separate packing for door, frame and shield
- Cable ties, cable tie holder, blanking plates and circuit identification labels
- Spirit level

IP43 Double Door-Plain

Description	Total No. of Modules (lncoming + Subincomer + Outgoing)	Cat. Ref.
6 way	$8+6+18$	VYP06DH
8 way	$8+6+24$	VYP08DH
10 way	$8+6+30$	VYP10DH
12 way	$8+6+36$	VYP12DH
12 way *	$\mathrm{MCCB}+6+36$	VYP12DM
16 way	$8+6+48$	VYP16DH

IP43 Double Door-Acrylic / Glazed

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
6 way	$8+6+18$	VYP06GH
8 way	$8+6+24$	VYP08GH
10 way	$8+6+30$	VYP10GH
12 way	$8+6+36$	VYP12GH
12 way *	$\mathrm{MCCB}+6+36$	VYP12GM
16 way	$8+6+48$	VYP16GH

IP54 Double Door-Plain

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
6 way	$8+6+18$	VYP06PH
8 way	$8+6+24$	VYP08PH
12 way	$8+6+36$	VYP12PH

TPN vertical distribution boards (modular incomer)

Description

- Metal DBs with 160A vertical bus-bar for three phase \& neutral (TPN) supply distribution

Technical data

- Conforms to IS 8623-III
- No. of modules - 4 way to 16 way
- Mounting - Surface / flush mounting
- IP category - IP30 for single door/ IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish
- Bus bar rating-160A

Features \& benefits

- Removable PAN assembly for easy Interconnection
- Reversible door with earthing and removable front plate
- Neutral link with protection cover
- Cement spill protection

Handle with lock provision

- Pozidrive screws for easy removal
- Anti wall insertion marking
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Cable ties, blank plates \& circuit identification labels
- Spirit level

Incoming \& outgoing devices

Incoming : Four pole MCBs / HLF MCBs / RCCBs / RCBOs / Isolator
Outgoing : SP / TP MCBs

IP43 Double Door-Plain

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$12+12$	VYV04DL-P
6 way	$12+18$	VYV06DL-P
8 way	$12+24$	VYVV8DL-P
12 way	$12+36$	VYV12DL-P
16 way	$12+48$	VYV16DL-P
		Cat. Ref.
Metering Box For VTPN Total No. of Modules (Incoming + Subincomer + Outgoing)		
Modular incomer	Suitable for all VTPN DBs	VYV00M

Distribution boards
novello ${ }^{+}$

TPN vertical distribution boards (MCCB incomer x160 frame)

Description

- Metal DBs with 160A vertical bus-bar vertical bus-bar for three phase \& neutral (TPN) supply distribution with MCCB as incomer

Technical data

- Conforms to IS 8623-III
- No. of modules - 4 way to 16 way
- Mounting - Surface / flush mounting
- IP category - IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish
- Bus-bar rating - 160A

Incoming \& outgoing devices

- Incoming : MCCBs Type h3, 3P \& 4P upto 160A
- Outgoing : SP / TP MCBs

Features \& benefits

- MCCBs upto 160A as incomer
- Removable PAN assembly for easy Interconnection
- Reversible door with earthing and removable front plate
- Neutral link with protection cover

Cement spill protection

- Handle with lock provision
- Pozidrive screws for easy removal

Anti wall insertion marking

- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Cable ties, blank plates \& circuit identification labels
- Spirit level

IP43 Double Door-Plain

VYV06DM-P

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
4 way	$\times 160$ frame $M C C B+12$	VYV04DM-P
6 way	$\times 160$ frame $M C C B+18$	VYV06DM-P
8 way	$\times 160$ frame $M C C B+24$	VYV08DM-P
12 way	$\times 160$ frame $M C C B+36$	VYV12DM-P
16 way	$\times 160$ frame $M C C B+48$	VYV16DM-P

Metering Box For VTPN

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
$x 160$ frame	Suitable for all VTPN DBs	VYV00M

TPN vertical distribution boards (MCCB incomer x250 frame)

Description

- Metal DBs with 250A vertical bus-bar for three phase \& neutral (TPN) supply distribution with MCCB as incomer

Technical data

- Conforms to IS 8623-III
- No. of modules - 4 way to 16 way
- Mounting - Surface / flush mounting
- IP category - IP43/54 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish
- Bus-bar rating - 250A

Incoming \& outgoing devices

- Incoming : MCCBs Type h3, 3P \& 4P upto 250A
- Outgoing : SP / TP MCBs

Features \& benefits

- MCCBs upto 250A as incomer
- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate
- Neutral link with protection cover
- Cement spill protection
- Handle with lock provision
- Pozidrive screws for easy removal
- Anti wall insertion marking
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Cable ties, blank plates \& circuit identification labels
- Spirit level
\qquad

IP43 Double Door-Plain Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$\times 250$ frame MCCB +12	VYV04DM2-P
6 way	$\times 250$ frame MCCB +18	VYV06DM2-P
8 way	$\times 250$ frame $M C C B+24$	VYV08DM2-P
12 way	$\times 250$ frame MCCB +36	VYV12DM2-P
16way	$\times 250$ frame MCCB +48	VYV16DM2-P
		Total No. of Modules (Incoming + Subincomer + Outgoing)
Metering Box For VTPN Description	Suitable for all VTPN DBs	Cat. Ref.
$\times 250$ frame	VYV00M	

VYV06DM2-P

Distribution boards
novello ${ }^{+}$

TPN phase segregated distribution boards

Description

- Metal DBs for three phase \& neutral (TPN) supply distribution with total phase segregation

Technical data
Conforms to IS 8623-III

- No. of modules - 4 way to 12 way
- Mounting - Surface / flush mounting
- IP category -
- IP30 for single door
- IP42 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

ncoming:
Modular : Provision for 4P MCBs / RCCBs / RCBOs as incomer
MCCB : Provision for h3 type 160A 3P and 4P MCCBs
Sub incomer: DP MCBs / RCCBs / RCBOs
Outgoing: SP MCBs

Features \& benefits

Total phase segregation between I/C, sub I/C \& O/G
Neutral link with protection cover

- Handle with lock provision
- Pozidrive screws for easy removal

100A tin plated insulated copper bus-bar

- Cable ties, blank plates \& circuit identification labels

Spirit level

VYG04DM

IP30 Single Door

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$12+12+12$	VYG04CL
6 way	$12+12+18$	VYG06CL
8 way	$12+12+24$	VYG08CL
12 way	$12+12+36$	VYG12CL
IP42 Double Door-Plain		
Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	$12+12+12$	VYG04DL
6 way	$12+12+18$	VYG06DL
8 way	$12+12+24$	VYG08DL
12 way	$12+12+36$	VYG12DL

IP42 Double Door-Plain

Description	Total No. of Modules (Incoming + Subincomer + Outgoing)	Cat. Ref.
4 way	MCCB $\times 160+12+12$	VYG04DM
6 way	MCCB $\times 160+12+18$	VYGO6DM
8 way	MCCB $\times 160+12+24$	VYG08DM
12 way	MCCB $\times 160+12+36$	VYG12DM

TPN phase selector distribution boards

Description

- Metal DB for three phase \& neutral (TPN) supply distribution with selector switches for phase selection

Technical data

- Conforms to IS 8623-III
- No. of modules - 4 way to 12 way

Mounting - Surface / flush mounting

- IP category -
- IP30 for single door
- IP42 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish
- 63A rotary switches

Incoming \& outgoing devices

- Incoming : 4P MCB / RCCB / RCBO / Isolator
- Outgoing : SP MCBs

Features \& benefits

- Equipped with 3 nos 63A rotary switches
- With bus bar interconnection between rotary switches
- Equipped with color coded wires set
- Neutral link with protection cover
- Handle with lock provision
- Pozidrive screws for easy removal
- 100A tin plated insulated copper bus-bar
- Cable ties, blank plates \& circuit identification labels
- Spirit level

VYC04DH

IP30 Single Door

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
4 way	$8+12$	VYCO4CH
6 way	$8+18$	VYC06CH
8 way	$8+24$	VYCO8CH
12 way	$8+36$	VYC12CH

IP42 Double Door-Plain

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
4 way	$8+12$	VYCO4DH
4 way (Single Front Plate)	$6+12$	VYC04DF
6 way	$8+18$	VYCO6DH
8 way	$8+24$	VYC08DH
12 way	$8+36$	VYC12DH

Distribution boards
novello ${ }^{+}$

flexi distribution boards

Description

- Metal DBs with flexibility to
mount incoming \& outgoings as per requirement
Technical data
- Conforms to IS 8623-III
- No of rows - 2, 3 \& 4 rows
- No. of modules - 28, 42, 56 \& 64 modules
- Mounting - Surface / flush mounting
- IP category - IP43 for double door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

Incoming \& outgoing devices

Any modular device as per requirement / application

Features \& benefits

- Removable Chassis for easy Interconnection
- Reversible door with earthing and removable front plate

Neutral link with protection cover
Cement spill protection
Plastic corners for protection against damage

- Handle with lock provision
- Pozidrive screws for easy removal
- Anti wall insertion marking
- Choice of plain and acrylic door
- Separate packing for door, frame and shield
- Cable ties, blank plates \& circuit identification labels

Spirit level

VYF414D

IP43 Double Door-Plain

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
2 row 28 mod	28	VYF214D
3 row 42 mod	42	VYF314D
4 row 56 mod	56	VYF414D
4 row 64 mod	64	VYF416D

IP43 Double Door-Acrylic / Glazed

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
2 row 28 mod	28	VYF214G
3 row 42 mod	42	VYF314G
4 row 56 mod	56	VYF414G
4 row 64 mod	64	VYF416G

IP54 Double Door-Plain

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
2 row 28 mod	28	VYF214P
3 row 42 mod	42	VYF314P
4 row 56 mod	56	VYF414P
4 row 64 mod	64	VYF416P

One way enclosures

Description

- Metal enclosures for flush and surface mounting

Features \& benefits

- Compact in size

Technical data

- Conforms to IS 8623-III
- No. of modules - 2, 4, 6 \& 8 modules
- Mounting - Surface / flush mounting
- IP category - IP30 for single door

Material - CRCA sheet steel

- Color - RAL 9010, matt finish

IP30 Single Door

Description	Total No. of Modules	Cat. Ref.
2 way	2	VYMO2C
4 way	4	VYMO4C
6 way	6	VYMO6C
8 way	8	VYMO8C

VYM04C

MCCB enclosures

Description

Metal enclosures for flush and surface mounting

Features \& benefits

- Compact in size

Technical data

Conforms to IS 8623-III

- For x160, x250 H3 MCCB
- Mounting - Surface / flush mounting
- IP category - IP30 for single door
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

IP30 Single Door

Description	Total No. of Modules	Cat. Ref.
MCCB X160 frame H3-3P	160 A	VYM160HM
MCCB X160 frame H3-4P	160 A	VYM161HM
MCCB X250 frame H3-3P	250 A	VYM250HM
MCCB X250 frame H3 - 4P	250 A	VYM251HM

VYM160HM

Plug \& socket outlets

Description

- Insulated / Metal-clad plug \& socket outlets for supplying specific loads

Features \& benefits

- Compact in size
- Provision to mount MCBs / RCCBs / RCBOs

Technical data

- Conforms to IS 8623-II
- Rating -
-- SPN - 10A, 20A \& 32A
-- TPN - 32A \& 63A
Mounting - Surface / flush mounting
IP category -
--IP30 for metal clad unit
--IP54 for insulated P\&S (IP30 for enclosure)
- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

VYA220C

IP30 Metal Plug \& Socket

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
$10 A, 1$ P	$10 A$ Metal P \& S with 1M	VYA110C
$20 A, 1$ P	$20 A$ Metal P \& S with 1M	VYA120C
$20 A, 2$ P	$20 A$ Metal P \& S with 2M	VYA220C
$20 A, 3 P$	$20 A$ Metal P \& S with 4M	VYA420C
$32 A, 3 P$	$32 A$ Metal P \& S with 4M	VYA432C
$63 A, 5 ~ P$	$63 A$ Metal P \& S with 8M	VYA863C

IP-54 Plastic Plug \& Socket

Description	Total No. of Modules (Incoming + Outgoing)	Cat. Ref.
$16 A, 2 P$	16A Plastic P \& S with 4M	VYB416C
$32 A, 2 P$	32A Plastic P \& S with 4M	VYB432C
$32 A, 5$ P	32A Plastic P \& S with 8M	VYB832C
$63 A, 5 ~ P$	63A Plastic P \& S with 8M	VYB863C

VYB432C

Metal plug \& socket outlet accessory

Description

- Metal-clad plug \& socket outlets for supplying specific loads

Features \& benefits

- Plastic caps for socket
- Ensures human safety
- Non-corrosive die cast aluminium alloy with robust design

Technical data

- Conforms to IS8804
- Rating - 10A - 63A

Range - Plugs, Sockets
Material - Cast aluminium alloy

- Color
-- Blue for 250VAC
-- Red for 440VAC

Metal Plug

Description	Cat. Ref.
$10 \mathrm{~A} 2 \mathrm{P}+\mathrm{E}$	VZ130I
$20 \mathrm{~A} 2 \mathrm{P}+\mathrm{E}$	VZ131I
$20 \mathrm{~A} 3 P+E$	VZ132I
$32 \mathrm{~A} 3 P+E$	VZ133I
$63 \mathrm{~A} 3 P+E$	VZ134I

Metal Socket

VZ132I \& VZ142I

Description	Cat. Ref.
$10 \mathrm{~A} 2 \mathrm{P}+\mathrm{E}$	VZ140I
$20 \mathrm{~A} 2 \mathrm{P}+\mathrm{E}$	VZ1411
$20 \mathrm{~A} 3 \mathrm{P}+\mathrm{E}$	VZ142I
$32 \mathrm{~A} 3 \mathrm{P}+\mathrm{E}$	VZ143I
63 A 3P+E	VZ144I

cable end boxes for novello ${ }^{+}$DBs

Description

To manage loose wires
Mounted on top of distribution boards

Technical data

- Material - CRCA sheet steel
- Color - RAL 9010, matt finish

tor	for SPN DBs	
	Description	Cat. Ref.
	4 way	VYS04E
	6 way	VYS06E
	8 way	VYS08E
\cdots	12 way	VYS12E
- \quad -	16 way	VYS16E
VYT08E	for TPN DBs	
	Description	Cat. Ref.
	4 way	VYT04E
	6 way	VYT06E
	8 way	VYT08E
	12 way	VYT12E
	16 way	VYT16E
*-		
* *	for Horizontal PPI DBs	
	Description	Cat. Ref.
	4+2 way	VYH04E
VYT04E	6+2 way	VYH06E
	8+2 way	VYH08E
	12+2 way	VYH12E
	for Tier PPI DBs	
	Description	Cat. Ref.
	6+2 way	VYP06E
	$8+2$ way	VYP08E
	10+2 way	VYP10E
	12+2 way	VYP12E
	12+2 way (MCCB I/c)	VYP12EM
	for VTPN DBs	
	Description	Cat. Ref.
	x160 Frame MCCB Incomer and Modular Incomer	VYV00E
	for Flexi DBs	
	Description	Cat. Ref.
	14 mod	VYF14E
	16 mod	VYF16E

Accessories for novello ${ }^{+}$DBs

Description

Keylock can be added at site without changing of distribution boards

Description	Cat. Ref.
Keylock +2 keys	VZ100i
Door handle for novello	VZ101i
Neutral link 5 connection	VZ110i
Neutral link 9 connection	VZ111i
Neutral link 15 connection	VZ112i
Neutral link 19 connection	VZ113i
4 way 8 Segment cover plate - 4 Mod	VZ120i
8 way 8 Segment cover plate - 4 Mod	VZ121i
6 way 8 Segment cover plate -4 Mod	VZ122i
12 way 8 Segment cover plate - 4 Mod	VZ123i

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
6	VYS06C	260	210	280	2 Nos.	2 Nos.	1 No.
8	VYS08C	295	245	315	2 Nos.	2 Nos.	1 No.
12	VYS12C	370	320	390	4 Nos.	2 Nos.	1 No.
16	VYS16C	460	410	480	5 Nos.	2 Nos.	1 No.
18	VYS18C	495	445	515	6 Nos.	2 Nos.	1 No.

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYS04D	225	175	245	1 No.	2 Nos.	1 No.
6	VYS06D	260	210	280	2 Nos.	2 Nos.	1 No.
8	VYS08D	295	245	315	2 Nos.	2 Nos.	1 No.
12	VYS12D	370	320	390	4 Nos.	2 Nos.	1 No.
16	VYS16D	460	410	480	5 Nos.	2 Nos.	1 No.
18	VYS18D	495	445	515	6 Nos.	2 Nos.	1 No.

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYS04D	225	175	245	1 No.	2 Nos.	1 No.
6	VYS06D	260	210	280	2 Nos.	2 Nos.	1 No.
8	VYS08D	295	245	315	2 Nos.	2 Nos.	1 No.
12	VYS12D	370	320	390	4 Nos.	2 Nos.	1 No.
16	VYS16D	460	410	480	5 Nos.	2 Nos.	1 No.
18	VYS18D	495	445	515	6 Nos.	2 Nos.	1 No.

Way	Cat No.	A	B	C
4	VYS04P	225	275	245
6	VYS06P	260	310	280
8	VYS08P	295	345	315
12	VYS12P	370	410	390

IP30 - Single Door (4M Incomer)

Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYT04CD	360	285	380	3 Nos.	2 Nos.	4 Nos.
6	VYTO6CD	400	325	420	4 Nos.	2 Nos.	4 Nos.

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYT04DD	360	285	380	3 Nos.	2 Nos.	4 Nos.
6	VYT06DD	400	325	420	4 Nos.	2 Nos.	4 Nos.

IP30-Single Door

000000

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYT04CH	400	325	420	4 Nos.	2 Nos.	4 Nos.
6	VYT06CH	440	365	460	5 Nos.	2 Nos.	4 Nos.
8	VYT08CH	505	430	525	6 Nos.	2 Nos.	4 Nos.
12	VYT12CH	690	615	710	9 Nos.	2 Nos.	4 Nos.

Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYT04GH	400	325	420	4 Nos.	2 Nos.	4 Nos.
6	VYT06GH	440	365	460	5 Nos.	2 Nos.	4 Nos.
8	VYT08GH	505	430	525	6 Nos.	2 Nos.	4 Nos.

IP43 - Double Door

(O)

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYT04DH	400	325	420	4 Nos.	2 Nos.	4 Nos.
6	VYT06DH	440	365	460	5 Nos.	2 Nos.	4 Nos.
8	VYT08DH	505	430	525	6 Nos.	2 Nos.	4 Nos.

Way	Cat No.	A	B	C
4	VYT04PH	400	460	420
6	$\mathrm{VYT06PH}$	440	500	460
8	$\mathrm{VYTO8PH}$	505	565	525

IP54 - Double Door - Metal Door

IP43-Acrylic Door-12 \& 16 way

00000000000
00000000000

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
12	VYT12GH	690	615	710	9 Nos.	2 Nos.	4 Nos.
16	VYT16GH	835	755	855	5 Nos.	2 Nos.	4 Nos.

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
12	VYT12DH	690	615	710	9 Nos.	2 Nos.	4 Nos.
16	VYT16DH	835	755	855	11 Nos.	2 Nos.	4 Nos.

Way	Cat No.	A	B	C	
12	VYT12PH	690	750	710	

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYH04DH	465	390	485	5 Nos.	2 Nos.	4 Nos.
6	VYH06DH	500	425	520	6 Nos.	2 Nos.	4 Nos.
8	VYH08DH	570	495	590	7 Nos.	2 Nos.	4 Nos.
12	VYH12DH	760	685	780	10 Nos.	2 Nos.	4 Nos.

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYH04GH	465	390	485	5 Nos.	2 Nos.	4 Nos.
6	VYH06GH	500	425	520	6 Nos.	2 Nos.	4 Nos.
8	VYH08GH	570	495	590	7 Nos.	2 Nos.	4 Nos.
12	VYH12GH	760	685	780	10 Nos.	2 Nos.	4 Nos.

IP54 - Double Door - Metal Door

Way	Cat No.	A	B	C
4	$\mathrm{VYH04PH}$	465	525	485
6	$\mathrm{VYH06PH}$	500	560	520
8	$\mathrm{VYH08PH}$	570	630	590
12	VYH 12 PH	760	820	780

IP43 - Double Door

0000000

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
$12+2$	VYP12DM	450	375	470	5 Nos.	2 Nos.	4 Nos.

IP43-Double Door-160 MCCB

0000000

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
$12+2$	VYP12GM	450	375	470	5 Nos.	2 Nos.	4 Nos.

IP54 Tier PPI DB 160 MCCB

Way	Cat No.	A	B	C
$6+2$	VYP06PH	310	370	330
$8+2$	VYP08PH	365	425	385
$12+2$	VYP12PH	450	510	470

Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
$12+2$	VYP12PM	450	510	470	5 Nos.	2 Nos.	4 Nos.

IP43 - Double Door

				Top Bottom			Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	25 K'out	32 K'out
4	VYV04DL-P	545	525	425	5 Nos.	2 Nos.	8 Nos.	2 Nos.
6	VYV06DL-P	682	662	562	5 Nos.	2 Nos.	8 Nos.	2 Nos.
8	VYV08DL-P	733	713	613	5 Nos.	2 Nos.	8 Nos.	2 Nos.
12	VYV12DL-P	841	821	721	5 Nos.	2 Nos.	8 Nos.	2 Nos.
16	VYV16DL-P	949	929	829	5 Nos.	2 Nos.	8 Nos.	2 Nos.

100000

				Top Bottom		Both Side		
Way	Cat No.	A	B	C	25 K'out	32 K'out	25 K'out	32 K'out
4	VYV04DM-P	750	730	630	5 Nos.	2 Nos.	8 Nos.	2 Nos.
6	VYV06DM-P	804	784	684	5 Nos.	2 Nos.	8 Nos.	2 Nos.
8	VYV08DM-P	858	838	738	5 Nos.	2 Nos.	8 Nos.	2 Nos.
12	VYV12DM-P	966	946	846	5 Nos.	2 Nos.	8 Nos.	2 Nos.
16	VYV16DM-P	1074	1054	954	5 Nos.	2 Nos.	8 Nos.	2 Nos.

IP43-250A MCCB Double Door

000000

					Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	32 K'out	25 K'out	32 K'out
4	VYV04DM2-P	850	830	730	5 Nos. 2 Nos.	8 Nos. 2 Nos.		
6	VYV06DM2-P	904	884	784	5 Nos.	2 Nos.	8 Nos. 2 Nos.	
8	VYV08DM2-P	958	938	838	5 Nos.	2 Nos.	8 Nos. 2 Nos.	
12	VYV12DM2-P	1066	1046	946	5 Nos.	2 Nos.	8 Nos. 2 Nos.	
16	VYV16DM2-P	1174	1154	1054	5 Nos.	2 Nos.	8 Nos. 2 Nos.	

IP30-Single Door

			Top Bottom		Both Side	
Way	Cat No.	A	B	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYG04CL	470	390	5 Nos.	2 Nos.	2 No.
6	VYG06CL	578	498	7 Nos.	2 Nos.	2 No.
8	VYG08CL	686	606	9 Nos.	2 Nos.	2 No.
12	VYG12CL	902	822	13 Nos.	2 Nos.	2 No.

IP42 - Double Door

				Top Bottom			Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYG04DL	490	470	390	5 Nos.	2 Nos.	2 No.
6	VYG06DL	598	578	498	7 Nos.	2 Nos.	2 No.
8	VYG08DL	706	686	606	9 Nos.	2 Nos.	2 No.
12	VYG12DL	922	902	822	13 Nos.	2 Nos.	2 No.

IP42-Double Door - MCCB Incomer

Way	Cat No.	A	B	C	Door	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYG04DM	470	395	490	One Door	4 Nos.	2 Nos.	1 No.
6	VYG06DM	578	503	598	One Door	6 Nos.	2 Nos.	1 No.
8	VYG08DM	686	611	706	Two Door	8 Nos.	2 Nos.	1 No.
12	VYG12DM	902	827	922	Two Door	11 Nos.	2 Nos.	1 No.

IP30 - Single Door

				Top Bottom		
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out
4	VYC04CH	450	375	217	5 Nos.	2 Nos.
6	VYC06CH	485	410	252	5 Nos.	2 Nos.
8	VYC08CH	560	485	327	5 Nos.	2 Nos.
12	VYC12CH	700	625	467	6 Nos.	2 Nos.

				Top Bottom		
Way	Cat No.	A	B	C	25 K'out	32 K'out
4	VYC04DF	520	340	540	6 Nos.	2 Nos.

IP42 - Double Door - Phase Selector DB

				Top Bottom		Both Side	
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
4	VYC04DH	420	340	440	4 Nos.	2 Nos.	4 Nos.
6	VYC06DH	455	375	475	5 Nos.	2 Nos.	4 Nos.
8	VYC08DH	490	410	510	5 Nos.	2 Nos.	4 Nos.
12	VYC12DH	560	480	580	6 Nos.	2 Nos.	4 Nos.

IP43 - Double Door-2 Tier DB

					Top Bottom		Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF214D	450	375	465	5 Nos.	2 Nos.	2 Nos.

					Top Bottom		Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF214G	450	375	465	5 Nos.	2 Nos.	2 Nos.

IP54 - Double Door - 2 Tier DB

IP43 - Double Door - 3 Tier DB

						Top Bottom	
Both Side							
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF214P	450	510	465	5 Nos.	2 Nos.	2 Nos.

					Top Bottom		Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF314D	450	375	465	5 Nos.	2 Nos.	2 Nos.

				Top Bottom			Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF314G	450	375	470	5 Nos.	2 Nos.	2 Nos.

				Top Bottom			Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
14	VYF314P	450	510	465	5 Nos.	2 Nos.	2 Nos.

IP43 - Double Door - Acrylic Door - 4 Tier DB

					Top Bottom		Both Side
Way	Cat No.	A	B	C	25 K'out	$25 / 32$ K'out	$25 / 32$ K'out
10	VYF410G	385	365	305	4 Nos.	2 Nos.	4 Nos.
14	VYF414G	470	450	390	6 Nos.	2 Nos.	4 Nos.
16	VYF416G	520	500	440	7 Nos.	2 Nos.	4 Nos.

IP54-Double Door-4 Tier DB

Way	Cat No.	A	B	C
10	VYF410P	385	365	425
14	VYF414P	470	450	510
16	VYF416P	520	500	560

Distribution boards Cable End Box

For Double Door DB

IP30 - Cable End Box

Cat No.	A	B	C
VYS04E	225	245	68
VYS06E	260	280	68
VYS08E	295	315	68
VYS12E	370	390	68
VYS16E	460	480	68
VYS18E	495	515	68

IP30 - Cable End Box

0000000

Cat No.	A	B	C
VYT04E	400	320	420
VYT06E	440	360	460
VYT08E	505	425	525
VYT12E	690	610	710
VYT16E	835	755	710

IP30 - Cable End Box

Cat No.	A	B	C
VYP04E	310	230	330
VYP08E	365	285	385
VYP10E	430	350	450
VYP12E	450	370	470

IP30 - Cable End Box

$$
0000
$$

Cat No.	A	B	C
VYF414E	450	370	470
VYF416E	500	420	520

IP30 - Cable End Box

00000000.

Cat No.	A	B	C
VYH04E	465	385	485
VYH06E	500	420	520
VYH08E	570	490	590
VYH12E	760	680	780

IP30 - Cable End Box

Cat No.	A	B	C
VYVOOE	310	230	330

IP30 2P Enclosure DB

Top Bottom					
Way	Cat No.	A	B	C	25 K'out
2	VYM02C	85	40	100	1 Nos.

					Top Bottom
Way	Cat No.	A	B	C	25 K'out
4	VYM04C	120	75	135	1 Nos.
6	VYM06C	155	110	170	2 Nos.
8	VYM08C	190	155	205	3 Nos.

novello ${ }^{+}$
MCCB Enclosures

IP30-160A MCCB Enclosure

Top Bottom					
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYM160HM	165	100	180	2 Nos.

IP30-250A MCCB Enclosure

					Top Bottom
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYM250HM	225	160	240	3 Nos.

Distribution boards

10\&20A Plug \& Socket DB

				Top Bottom				
Way	Cat No.	A	B	C	25 K'out			
2	VYA110C / VYA120C /							
VYA220C						$\quad 124$	137	2 Nos.
:---:	:---:							

					Top Bottom
Way	Cat No.	A	B	C	25 K'out
2	VYA420C / VYA432C	120	85	135	1 Nos.

63A 5 PIN P\&S with 8P MCB DB

					Top Bottom
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYA863C	200	77	210	2 Nos.

20\&30A TP P\&S with FP MCB DB

16 3P P\&S with FP MCB DB

5

Top Bottom					
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYB416C	125	80	140	1 Nos.

32A 3P P\&S with FP MCB DB

$\underbrace{}_{4}$

					Top Bottom
Way	Cat No.	A	B	C	25 K'out
2	VYB432C	125	80	140	1 Nos.

Top Bottom					
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYB832C	185	110	200	2 Nos.

63A 5P P\&S with 8P MCB DB

Top Bottom					
Way	Cat No.	A	B	C	$25 / 32$ K'out
2	VYB863C	220	160	223	1 Nos.

novello ${ }^{+}$ panel board system

The new novello+ panel boards are professionally designed BS / IEC type tested factory assembled system that incorporates more cabling space and a powder coated rust-proof finish. The panel board is suitable for MCCBs as incomer and MCCBs as outgoing.

Advantages for you:

- Professional alignment with spirit level
- Reusable \& flexible cable management
- Better protection with unique door packaging
- Upgrade to lockable enclosures possible

Technical data:

- Single Door: IP30 / Double Door: IP43 \& IP54
- As per IS 8623 - III
- Protection against mechanical impact IK09
- Plain \& Acrylic doors
- RAL 9010
- Standard Accessories:
-- Wires sets
-- Insulated bus bars
-- Insulated neutral bars \& earth bar
-- blanking plates, Cable management system
-- Circuit identification labels

Expert tips

01
ASTA certified insulated tinned copper bus bar assembly

02
Optimal cabling 2 space

03
Earth and neutral bars positioned for easier cabling

04

Ease of phase identification L1, L2, L3 mouldings show through when the front cover is fitted. Textured surface on bus bar assembly allows contractor to write circuit identification.

novello+ - 250A / 400A / 630A / 800A panel board system upto 800A incoming, 125A / 250A outgoing

Standards:

BS EN 60439-1, IEC 60439-1

- Suitable for MCCBs \& isolating switches incomers.
- Suitable for 3P MCCB incomer \& 3P MCCB outgoing

ASTA certified insulated tinned copper bus bar assembly:

- 250A - Rated short circuit withstand capacity for bus bar 25kA at 415 V for 0.3 sec
- 400A - Rated short circuit withstand capacity for bus bar 35kA at 415V for 1 sec.
-630A / 800A - Rated short circuit withstand capacity for bus bar 40kA at 415 V for 0.3 sec
Sheet steel with epoxy powder coating RAL 9002
- IP41
- Accessories like key lock, Metering box, Cable End Box.

Note: Link kits are not supplied with standard enclosures, the same to be ordered separately
*Incomer suitable for 3P h250 frame thermal magnetic MCCB
\#Incomer suitable for 3P h400 frame thermal magnetic MCCB
${ }^{\wedge}$ Incomer suitable for 3P h630 / h1000 frame thermal magnetic МССB
novello+ - 250A / 400A / 630A / 800A panel board system
accessories

Incomer kits (Includes mounting plates for MCCB)
250A 3P MCCB incomer kit
400A 3P MCCB incomer kit
630A 3P MCCB incomer kit

Key lock for distribution boards

250A Incoming, 125A Outgoing
Cable End Box

400A Incoming, 125A Outgoing

Cable End Box
VYDOOE4

630A / 800A Incoming, 125A / 250A Outgoing
Cable End Box

250A Metering box
Hinged door Metering Box*

400A Metering box

Hinged door Metering Box*
VYD00M4

630A / 800A Metering box
Hinged door Metering Box
VYD00M6

250A

Reference			
Surface mounted	H	W	D
JN2B00002S16	700	615	160
JN2B00004S16	775	615	160
JN2B00006S16	855	615	160
JN2B00008S16	925	615	160
JN2B00010S16	1000	615	160
JN2B00012S16	1115	615	160
JN2B00016S16	1375	615	160

400A

Reference			
Surface mounted	H	W	D
JN4B00004S16	930	690	200
JN4B00006S16	1005	690	200
JN4B00008S16	1080	690	200
JN4B00010S16	1230	690	200
JN4B00012S16	1380	690	200

630A / 800A

Reference			
Surface mounted	H	W	D
JN8B00004S16	1035	846	200
JN8B00006S16	1110	846	200
JN8B00008S16	1215	846	200
JN8B00010S16	1320	846	200
JN8B00012S16	1410	846	200
JN8B00016S16	1620	846	200

630A / 800A

Reference			
Surface mounted	H	W	D
JN8B00400S16	1095	846	200
JN8B00600S16	1200	846	200
JN8B00800S16	1305	846	200
JN8B01000S16	1410	846	200
JN8B01200S16	1515	846	200
JN8B01600S16	1725	846	200

	A	B	C
CEB 250A	615	609	160
CEB 400A	690	684	200
CEB 630A / 800A	846	840	200

	A	B	C	D
Metering box* 250A	615	510	609	160
Metering box* 400A	690	580	684	200
Metering box* 630A / 800A	846	736	840	200

*Metering box are excluding accessories

Enclosures

easier, safer and faster installations

golf range offers compact, sleek and light weight plastic enclosures for mounting of modular devices in residential \& commercial applications. Golf enclosures are made up of insulated engineering plastic material in RAL 9010 color to match contemporary interiors of modern buildings. Vector range of weather proof enclosures (IP65) answers the need of electrical distribution in humid and dusty environments. These enclosures are equipped with special gasket to maintain high ingress protection (IP) to protect modular devices from harmful dust and moisture.

02	Page
golf enclosures	62
vector enclosures	68
Bus bars and terminals	71

enclosures

Advantages for you:

- Easy mounting - wall box can be turned 180° and has a removable cable entry slide
- More wiring space - between the modular devices and terminals as well as behind the DIN rails
- Clean and convenient wiring - thanks to patented integrated cable management system
- Unbreakable door hinges
- Same door for VS surface mounted version and VF flush mounted version
- Optimised conduit and trunking entries

Technical data:

- Ingress Protection (IP) - IP40 with door
- Insulation class - Class II (double insulation)
- Impact resistance - IK07
- Material - Flame retardant plastic
- Colour - RAL 9010, white

Expert tips

01
Easy and convenient cable management - clean and easy wiring using patented integrated cable management with standard cable-ties and clips

05

Self explanatory box

- all product features are clearly indicated by illustrations in the box itself

02
More cabling space makes the job quicker and easier - ease of installation thanks to a greater space for working and cabling between modular devices and terminals

06

Fast installation

- 90° turn screws for securing front cover - built-in captive screws, cannot be lost

03
Snapper mounted terminals - fast and hassle free installation of snapper mounted earth and neutral terminals. Can be mounted on top or bottom of the enclosures

Unbreakable door hinges - same door for flush and surface mounted enclosures - left or right opening reversible door installation

Description

- Plastic enclosures for distribution of SPN \& TPN supply in residential \& commercial applications

Technical data

- No of rows - 1, 2, 3 \& 4 rows
- No. of modules - 4, 8, 12, 18, 24, 36 \& 48 modules
- Mounting - Surface / flush mounting
- IP category - IP40 for double door
- Impact resistance - IK07
- Material - Flame retardant engineering plastic
- Color - RAL 9010 (white)

VF312TJ

VS412PJ

Features \& benefits

- Integrated cable management for easy wiring management
- Snapper mounted PE-N terminals
- Reversible door, can be changed at site
- Choice of plain or transparent door
- More space between \& behind DIN rails for easy wiring
- Removable front plate \& gland plates
- 90° turn captive screws for fast installation
- Pre-punched knockouts for conduit \& cable trunking entry

IP40 IK 07
class II \square

IEC 60 695-2-1/0
and 60 695-2-1/1

Description		Term. Qty.	Cat. Ref. Plain	Cat. Ref. Transparent
			Door	

Flush Mounting

1 row 4 module	N: $2 \times 16+2 \times 10$	1	VF104PJ	VF104TJ
	E: $2 \times 16+2 \times 10$	1		
1 row 8 module	N: $2 \times 16+4 \times 10$	1	VF108PJ	VF108TJ
	E: $2 \times 16+4 \times 10$	1		
1 row 12 module	$\mathrm{N}: 4 \times 16+6 \times 10$	1	VF112PJ	VF112TJ
	E: $4 \times 16+6 \times 10$	1		
1 row 18 module	N: $6 \times 16+8 \times 10$	1	VF118PJ	VF118TJ
	E: $6 \times 16+8 \times 10$	1		
2 row 24 module	N: $5 \times 16+6 \times 10$	2	VF212PJ	VF212TJ
	E: $9 \times 16+13 \times 10$	1		
2 row 36 module	N: $5 \times 16+6 \times 10$	1	VF218PJ	VF218TJ
	E: $9 \times 16+13 \times 10$	1		
3 row 36 module	N: $1 \times 25+7 \times 16+8 \times 10$	2	VF312PJ	VF312TJ
	E: $1 \times 25+14 \times 16+17 \times 10$	1		
4 row 48 module	N: $1 \times 25+6 \times 16+7 \times 10$	2	VF412PJ	VF412TJ
	E: $1 \times 25+10 \times 16+13 \times 10$	2		

Surface Mounting

1 row 4 module	N: $2 \times 16+2 \times 10$	1	VS104PJ	VS104TJ
	E: $2 \times 16+2 \times 10$	1		
1 row 8 module	$\mathrm{N}: 2 \times 16+4 \times 10$	1	VS108PJ	VS108TJ
	E: $2 \times 16+4 \times 10$	1		
1 row 12 module	$\mathrm{N}: 4 \times 16+6 \times 10$	1	VS112PJ	VS112TJ
	E: $4 \times 16+6 \times 10$	1		
1 row 18 module	$\mathrm{N}: 6 \times 16+8 \times 10$	1	VS118PJ	VS118TJ
	E: $6 \times 16+8 \times 10$	1		
2 row 24 module	$\mathrm{N}: 5 \times 16+6 \times 10$	2	VS212PJ	VS212TJ
	E: $9 \times 16+13 \times 10$	1		
2 row 36 module	$\mathrm{N}: 5 \times 16+6 \times 10$	1	VS218PJ	VS218TJ
	E: $9 \times 16+13 \times 10$	1		
3 row 36 module	N: $1 \times 25+7 \times 16+8 \times 10$	2	VS312PJ	VS312TJ
	E: $1 \times 25+14 \times 16+17 \times 10$	1		
4 row 48 module	N: $1 \times 25+6 \times 16+7 \times 10$	2	VS412PJ	VS412TJ
	E: $1 \times 25+10 \times 16+13 \times 10$	2		
Key Lock				VZ794N
(Optional)				

Cable entries

- top/bottom

One side cable entry slide, knockout-type, (VF104... and VF108...).
The other side pre cuts with diameters $20 \mathrm{~mm}, 25 \mathrm{~mm}, 32 \mathrm{~mm}$ and 40 mm the wall box is 180° turnable (slider can be placed at top or bottom).

- side

Each side has one knockout of $\varnothing 25 \mathrm{~mm}$ on the left and right in the upper and lower connection space.

As of 2 rows, knockouts $\varnothing 25 \mathrm{~mm}$ on the left and right between the device rows. (no knockouts at 4 and 8 module enclosures).

冬			Dimension (in mm)			
	Frame		Wall niche			
	A	H	E	F		
VF104...	1 row 4	204	225	170	189	
VF108...	1 row 8	275	225	242	189	
VF112...	1 row 12	352	293	318	257	
VF212...	2 row 12	352	418	318	382	
VF312...	3 row 12	352	543	318	507	
VF412...	4 row 12	352	688	318	652	
VF118...	1 row 18	460	293	426	257	
VF218...	2 row 18	460	418	426	382	

Cable entries

- top/bottom

One side cable entry optimised for use of trunking, knockout-type. The other side has pre-cuts with diameters $20 \mathrm{~mm}, 25 \mathrm{~mm}, 32 \mathrm{~mm}$ and 40 mm . The wall box is 180° turnable.

Catalogue No.	Dimension (in mm)		Wall fixation			
	A	H	E	F	G	
VS104...	1 row 4	137.5	183.5	101	68	58
VS108...	1 row 8	209.5	183.5	173.5	68	58
VS112...	1 row 12	281.5	251.5	221.5	135.5	58
VS212...	2 row 12	281.5	376.5	221.5	260.5	58
VS312...	3 row 12	281.5	500	221.5	385.5	58
VS412...	4 row 12	281.5	646.5	221.5	491	78
VS118...	1 row 18	389.5	251.5	329.5	135.5	58
VS218...	2 row 18	389.5	376.5	329.5	260.5	58

golf enclosures designed for you

golf range offers compact, sleek and light weight plastic enclosures for mounting of modular devices in residential \& commercial applications. golf enclosures are made up of insulated engineering plastic material in RAL 9010 color to match contemporary interiors of modern buildings.
retdot design aware simet 2010

vector enclosures

Advantages for you:

- Neoprene rubber gasket to maintain high IP level
- Supplied with cable glands, N \& E terminals (Optional key lock)
- Transparent door to see status of modular devices without opening door

Technical data:

- Conforms to IEC 60695-2-1
- Mounting - Surface mounting
- No. of rows - 1, 2, 3 \& 4 rows
- No. of ways - 3 module to 54 modules
- Enclosure Ingress protection level - IP65
- Insulation class - Class II (double insulation)
- Impact resistant level - IK07 for $<12 \bmod$ IK08 for > 12 mod

Expert tips

01
High ingress protection level

- IP65 Enclosure
- suitable for applications exposed to dust and moisture

05

Quick and convenient installation

- supplied with IP54 cable glands
- includes neutral and earth terminals
- pre-cut knockouts of various diameter for conduit entry

02
Class II, double insulation

- made up of insulated material
- electric shock proof enclosures, added safety to user
- no worry about paint peel off, rusting or enclosure earthing

06

Fast installation

- 90° turn screws for securing front cover
- built-in captive screws, cannot be lost

03
Transparent door

- allows to monitor status of devices installed inside

04
Versatile range
-3 to 54 modules capacity

- choice of $1,2,3 \& 4$ rows

VE212L

Description

Surface mounted enclosures for distribution of electrical energy in dusty \& humid environment

Technical data

- Conforms to IEC 60695-2-1
- Mounting - Surface mounting
- No. of rows - $1,2,3$ \& 4 rows
- No. of ways - 3 module to 54 modules
- Enclosure IP category - IP65
- Insulation class - Class II
- Impact resistant level - IK07 for < 12 mod \& IK08 for > 12 mod enclosures Features \& benefits
- Neoprene rubber gasket maintains high IP levels
- Supplied with cable glands, earth \& neutral terminals
- Transparent door to see status of modular devices

IEC 60 695-2-1/0 and IP65 IK07 < 12 60 695-2-1/1

VE106L

1 row 3 module

w. 111 x h. 175 x d. 93 mm

1 row, 6 module
w. $165 \times \mathrm{h} .190 \times \mathrm{d} .113 \mathrm{~mm}$

1 row, 10 module

w. $237 \times$ h. $210 \times$ d. 114 mm

1 row, 12 module
w. $310 \times$ h. $302 \times \mathrm{d} .151 \mathrm{~mm}$

2 rows, 24 module
w. $310 \times$ h. $427 \times$ d. 151 mm

3 rows, 36 module
w. $310 \times$ h. $552 \times$ d. 151 mm

VE312L

4 rows, 48 module
w. $310 \times$ h. $677 \times$ d. 151 mm

1 row, 18 module
w. $418 \times$ h. $302 \times$ d. 151 mm

2 rows, 36 module

w. $418 \times$ h. $452 \times$ d. 151 mm

3 rows, 54 module

w. 418 x h. $602 \times$ d. 151 mm

E: $2 \times 16+2 \times 10$
N : $2 \times 16+2 \times 10$
supplied with IP54 cable glands 3xM20

E: $3 \times 16+4 \times 10$
VE106L
$N: 3 \times 16+4 \times 10$
supplied with IP54 cable glands
$2 \times \mathrm{M} 20+2 \times \mathrm{M} 25+1 \times \mathrm{M} 32$
E: $5 \times 16+6 \times 10$
VE110L
$N: 5 \times 16+6 \times 10$
supplied with IP54 cable glands
4xM20+2xM25+1xM32

E: $1 \times 25+5 \times 16+7 \times 10$
VE112L
$N: 1 \times 25+5 \times 16+7 \times 10$
supplied with IP54 cable glands
$10 \times \mathrm{M} 20+2 \times \mathrm{M} 25+1 \times \mathrm{M} 32$
$E: 1 \times 25+7 \times 16+9 \times 10 \quad 1$
VE212L
$N: 1 \times 25+7 \times 16+9 \times 10$
supplied with IP54 cable glands $14 \times \mathrm{M} 20+4 \times \mathrm{M} 25+1 \times \mathrm{M} 32$
$E: 1 \times 25+10 \times 16+11 \times 10 \quad 1$
VE312L
$N: 1 \times 25+10 \times 16+11 \times 10$
supplied with IP54 cable glands
$14 \times \mathrm{M} 20+10 \times \mathrm{M} 25+2 \mathrm{xM} 32$
$E: 1 \times 25+11 \times 16+13 \times 10 \quad$ VE412L
$N: 1 \times 25+11 \times 16+13 \times 10$
supplied with IP54 cable glands
$14 \times \mathrm{M} 20+10 \times \mathrm{M} 25+2 \mathrm{xM} 32$
E: $1 \times 25+7 \times 16+9 \times 10$
N: $1 \times 25+7 \times 16+9 \times 10$
supplied with IP54 cable glands 8xM20+10xM25+1xM32

E: $1 \times 25+10 \times 16+11 \times 10$
VE218L
N: $1 \times 25+10 \times 16+11 \times 10$
supplied with IP54 cable glands
$8 x M 20+14 \times M 25+1 \times M 32$
$E: 1 \times 25+11 \times 16+13 \times 10$
1
VE318L
$N: 1 \times 25+11 \times 16+13 \times 10$
supplied with IP54 cable glands
8xM20+18xM25+2xM32
(Optional)

Dimensions

	Rows	A	H	E	F
VE103L / VE103PN	1	111	175	-	147
VE106L / VE106PN	1	165	190	108	158
VE110L / VE110PN	1	237	210	180	173
VE112L / VE112PN	1	310	302	230	155
VE212L / VE212PN	2	310	427	230	280
VE312L / VE312PN	3	310	552	230	405
VE412L / VE412PN	4	310	677	230	550
VE118L / VE118PN	1	418	302	338	155
VE218L / VE218PN	2	418	452	338	305
VE318L / VE318PN	3	418	602	338	455

The Ingress Protection (IP) for all low voltage enclosures up to 1000 V AC and 1500 V DC is defined in the standard IEC 60529 . It comprises the letters IP followed by two digit (e.g. IPXX)

First digit :
protection against solid substances

IP		Short Description
0		Non-protected
1		Protected against solid objects greater than 50 mm
2		Protected against solid objects greater than 12 mm
3		Protected against solid objects greater than 2.5 mm
4		Protected against solid objects greater than 1 mm
5	!	Dust-protected
6	\square	Dust-tight

Second digit :

protection against liquid substances

IP		Short Description
0		Non-protected
1		Protected against dripping water
2	4	Protected against dripping water at up to 15° from the vertical
3		Protected against spraying water at up to 60° from the vertical
4	(3	Protected against splashing water from all directions
5		Protected against water jets
6	\Rightarrow	Protected against heavy seas
7		Protected against the effect of immersion
8		protected against submersion

Prong type bus bars
For connecting modular MCBs of type ML
Brown - Phase
Blue - Neutral

Fork type bus bars

For connecting modular MCBs of type NB, NC and ND

Technical data

- Conforms to IEC 60947-7 / IEC 60439-1
- Material of bus bars: E-Cu 58 F25
- Operational voltage: 415V AC
- Material of insulation:

KB 163P - KB163N : epoxy
KDXXX : PVC

KM14N

| 3P bus bar, $\mathbf{1 2} \mathbf{~ m o d}$ | 63 | 10 | 12 |
| :--- | :--- | :--- | :--- | KDN363A

(for KDN463A)

63A DIN rail mounting neutral link	KM14N
$5 \times 16^{\circ}+9 \times 10^{\circ}$	KF83D
Terminal connector $-\mathbf{3 5}$ sq. mm	KR50U
Modular terminal block	
100 A SP 1Module	

Blanking plates

Half module P031F
One module P032F

PO31F

Protection \& switching devices

reliable solutions for protecting people, installation and equipment

Hager protection devices set the industry standard for reliability, quality and performance. It is the mission of company to provide the highest quality products that clearly set themselves apart from the market. Hager range of modular protection devices comprises of over-current protection, residual

03	Page
ACBs	74
MCCBs	82
Manual changeover switches	164
Automatic transfer switches	174
SPN ACCLs	189
ACCLs	191
Switch disconnectors	193
2 way centre-off changeover switches	193
MCBs	196
RCCBs	206
RCBOs	208
RCD add-on blocks	217
Accessories	220
Earth leakage relays	222
Surge protection devices	225
HRC fuse carriers	241
HRC cartridge fuses gG type	243

High powered air circuit breakers hw

Air Circuit Breaker products get their name from the fact that their breaking chambers are in the open air to allow better energy dissipation. Their electrical and mechanical strength, breaking capacity, maintainability and accessories make them ideal for protection for low voltage installations.

Advantages for you:

- High breaking capacity: Icu=Ics=Icw(1s) upto 100kA
- Optimized and compact panel size: same height and depth
- Terminal connection flexibility: horizontal/vertical terminal easy to turn at 90°
- Quick and easy mounting of accessories
- OCR: integrated communication, remote reset, ZSI, Temperature alarm
- Reliable information: fault LED info keep 1 month, fault record
- Advanced protection: low load, unbalance voltage, reserve power, low/over voltage protection
- Advanced metering: ammeter, voltage, power, energy, demand...

Technical data:

- Comply with IEC 60947-2
- Rated current range: 630-5000A with 3 frames
- Breaking capacity: $50,65,85,100 \mathrm{kA}$
- Rated voltage: 690V
- Insulated voltage: 1000V
- Impulse voltage: 12KV
- Switch Disconnector
- 3 kinds of OCR: Basic, Amp, Energy

Expert tips

Intelligent OCR LSIGN protection, LCD display, pretrip alarm, fault recording, remote reset.
Signal indication LED PTA/LSI/GF/COM

05

Easy maintenance Event record 200, fault record 250 (reserved for ever), OCR checker tool

Flexible protection Can switch ON/OFF LSIGN and thermal memory separately

06

Flexible terminal connection Horizontal/Vertical terminal rotate at 90° to make it easier for panel builder to mount on busbars. For frame A up to 1600A and frame B up to 3200A.

03

Fast and economic to build up communication network. Communication module integrated in OCR

Wide range of accessories Including: arc shield, phase barrier, temperature sensor, dust cover (IP54), ...

Flexible terminal connections

Connectors can be set horizontally and vertically, which allows an easy mounting by adapting their position to the busbars.
Horizontal/vertical terminals rotate at 90° to make easier panel builder's
convenience regarding busbar connection. ${ }^{1)}$

Standard connection

Vertical

Mixed connection (top / bottom)
Vertical / horizontal

Horizontal

Front

Vertical / front

Frame				A		B			C	
Type				H	N	N	S	P	P	
Rated current			A	630-2000		630-4000			3200-5000	
Rated operating voltage (Ue)			V	690						
Rated insulation voltage (Ui)			V	1000						
Rated impulse withstand voltage (Uimp)			KV	12						
Frequency			Hz	50/60						
Number of poles			poles	3-4						
Current setting range (...x In max)			Ir	0.4-1.0						
Rated current of neutral pole (...\% x In)			\%/ln	100\%						
Rated breaking capacity (Icu)	AC 690/600/550V		KA	36	50	50	6585	85	85	
	AC 415/380/220V			5	65	65		100	100	
Rated service breaking capacity (Ics)	$\begin{aligned} & \text { AC 690/600/550V } \\ & \hline \text { AC 415/380/220V } \end{aligned}$		KA	100\% Icu						
Rated short-time capacity (Icw)	1 s		KA	36	65	65	85	85	85	
	3 s				36	50	55	65	65	
Rated making capacity (kA peak) (lcm)	AC 690/600/550V		KA	76	105	105	143	187	187	
	AC 415/380/220V			105	143	143	187	220	220	
Utilization category (according to IEC 60947-2)				B						
Time										
Maximum total breaking time			ms	40						
Closing operating time	motor charging time		s	10						
	max. closing time		ms	40						
Operating cycle										
Mechanical life cycle	without maintenance		times	20000		15000			10000	
	with maintenance			30000		20000			20000	
Electrical life cycle	without maintenance			5000		06-20: 10000			2000	
			25-40: 5000							
	with maintenance			10000		06-20: 15000			5000	
Dimensions										
External dimension (W $\times \mathrm{H} \times \mathrm{D}$, except busbar)	fixed type	3 pole		mm	$337 \times 404 \times 296$		$408 \times 404 \times 296$			$633 \times 404 \times 296$
		4 pole			422	$\times 296$		404x		$803 \times 404 \times 296$
	draw-out	3 pole	328		$\times 368$		460x		$624 \times 460 \times 368$	
	type	4 pole	413		$\times 368$		460×		$794 \times 460 \times 368$	
							-32:			
	fixed type	3 pole					40:		76	
	fixed type	4 pole					-32:			
,ight		4 pole					40:		81	
			kg				-32:			
	draw-out	3 pole					40:		145	
	type						32:		173	
		4 pole					40:		173	

Fixed type

Draw-out type

Frame				A	B	C	
Type				N.....A	N.....A	P..... A	
Rated current			A	630-2000	630-4000	3200-5000	
Rated operating voltage (Ue)			V		690		
Rated insulation voltage (Ui)			V		1000		
Rated impulse withstand voltage (Uimp)			KV		12		
Frequency			Hz		50/60		
Number of poles			poles		3-4		
Rated current of neutral pole (...\% x In)			\%/In		100\%		
Rated short-time capacity (Icw)			KA	65	65	85	
				36	50	65	
Rated making capacity (kA peak) (lcm)	AC	/550V	KA	105	105	187	
	AC	/220V		143	143	220	
Utilization category (according to IEC 60947-3)					AC23		
Time							
Maximum total breaking time			ms		40		
Closing operating time	motor charging time		s		10		
	max. closing time		ms		40		
Operating cycle							
Mechanical life cycle	without maintenance		times	20000	15000	10000	
	with maintenance			30000	20000	20000	
Electrical life cycle	without maintenance				06-20: 10000		
			5000	25-40: 5000	000		
	with maintenance			10000	06-20: 15000	5000	
			25-40: 10000				
Dimensions							
External dimension (W $\times \mathrm{H} \times \mathrm{D}$, except busbar)	fixed type	3 pole		mm	$337 \times 404 \times 296$	$408 \times 404 \times 296$	$633 \times 404 \times 296$
		4 pole			$422 \times 404 \times 296$	$523 \times 404 \times 296$	$803 \times 404 \times 296$
	draw-out type	3 pole	$328 \times 460 \times 368$		399x460x368	$624 \times 460 \times 368$	
		4 pole	$413 \times 460 \times 368$		514×460×368	$794 \times 460 \times 368$	
Weight	fixed type		kg		06-32: 44		
		3 pole		34	40: 61	76	
				44	06-32: 55	81	
		4 pole		44	40: 81	81	
	draw-out type				06-32: 87	145	
		3 pole		63	40: 107		
		pole		80	06-32: 130	173	
				80	40: 161		

Fixed type

Draw-out type

Characteristics

Reference		HWX611	HWX612	HWX613	HWX621	HWX622	HWX623	HWX633
Type		LI	LSI	LSIG	LI Amp	LSI Amp	LSIG Amp	Energy
Frequency $50 / 60 \mathrm{~Hz}$		-	-	-	-	-	-	-
OCR			.	\ldots			\ldots
		\bigcirc	-					
								3
		$\underline{1}$	$\stackrel{1}{15}$	$\stackrel{1 s c}{ }$	H20000000	Lsimer	15100	$\underline{1206}$
Power	externals	-	-	-	-	-	-	-
	self	-	-	-	-	-	-	-
Protection function	LTD	-	-	-	-	-	-	-
	STD	-	-	-	-	-	-	-
	INST	-	-	-	-	-	-	-
	PTA	-	-	-	-	-	-	-
	GFT	-	-	-	-	-	-	-
	neutral protection	-	-	-	-	-	-	-
	fail safe	-	-	-	-	-	-	-
	MCR	-	-	-	-	-	-	-
Indication	long time pick up LED	-	-	-	-	-	-	-
	fault LED	L, I	L, S/I	L, S/I, G	$\begin{aligned} & \mathrm{L}, \mathrm{I} \\ & \text { PTA } \end{aligned}$	$\begin{aligned} & \mathrm{L}, \mathrm{~S} / \mathrm{I} \\ & \text { PTA } \end{aligned}$	$\underset{\text { PTA }}{\substack{\text { S/I, G }}}$	$\underset{\text { PTA }}{\text { L, S/I, G }}$
	LCD display, Amp and measurement	-	-	-	-	-	-	-
	LCD display, Amp, Energy, voltage, power, energy, demand and measurement	-	-	-	-	-	-	-
Digital output	separately continuous contact	- (2NO) L, I	$\begin{gathered} \bullet(2 \mathrm{NO}) \\ \mathrm{L}, \mathrm{~S} / \mathrm{I} \end{gathered}$	$\begin{aligned} & \bullet(3 \mathrm{NO}) \\ & \mathrm{L}, \mathrm{~S} / \mathrm{I}, \mathrm{G} \end{aligned}$	$\begin{aligned} & \bullet(3 \mathrm{NO}) \\ & \mathrm{L}, \mathrm{I}, \mathrm{PTA} \end{aligned}$	- (3NO) L, S/I, PTA	$\begin{aligned} & \bullet(4 \mathrm{NO}) \mathrm{L}, \\ & \mathrm{~S} / \mathrm{I}, \mathrm{G}, \mathrm{PTA} \end{aligned}$	- (4NO) L, S/I, G, PTA
ZSI		-	-	-	-	-	-	-
Reset button		-	-	-	-	-	-	-
Advanced functions	COM	-	-	-	-	-	-	-
	event / fault recording	-	-	-	-	-	-	-
	under/over voltage protection	-	-	-	-	-	-	-
	unbalanced current / voltage protection	-	-	-	-	-	-	-
	reverse power protection	-	-	-	-	-	-	-
	power P, Q, S, power factor, 3 phases voltage	-	-	-	-	-	-	-
	demand current / voltage	-	-	-	-	-	-	-

hヨ MCCBs and trip-free switches 16 to 1600 A

The new \mathfrak{h} range of MCCBs provides safe and easy solutions for low voltage electrical circuits protection. The state of the art circuit breakers offer both designers and installers wide range of features and benefits. Special attention has been given to ergonomics, especially with the integration of these devices in novello+ distribution boards.

Advantages for you:
Technical data:

- Easy to install
- Quick, easy and safety mounting of accessories
- Wide range of rated current ratings and breaking
capacities
- Calibrated at 50 Deg centigrade
- Trip-free switches

- Comply with IEC 60947-2
- 6 frame sizes: $\times 160, \times 250$, h250, h630, h1000, h1600
- Breaking capacity: $18,25,40,50,65,70 \mathrm{kA}$
- Thermal magnetic and electronic trip units
- 3 pole and 4 poles
- Current limiting type
- Complete range of accessories

- International certification and approvals

Expert tips

01

Design by Hager in harmony with Hager enclosures and modular products Breaking capacity:
18 to 70 kA ,
Icu 415V AC, covers all applications

05
Single quarter turn screw to open secondary cover / visibility of auxiliaries connected

02
Electronic trip unit (LSI) is permitting total selectivity and generator protection

06

Integrated padlocking facility, easy solution for maintenance

03

Protected O/L setting with thermal adjustable upto 63%, Calibration at $50^{\circ} \mathrm{C}$

07

Complete range of

 accessories,rotary handles, padlocks, motor operator, terminal covers

Easy mounting of auxiliaries. Easy opening of secondary cover, clip-on type auxiliaries

08

Flexible connection Collar terminals, front and rear connections, straight connections, spreaders...

Moulded case circuit breakers x160

Available in 3P and 4P
Mechanical test button, lockable settings, integrated padlocking handle Ø 4 mm ,
Thermal magnetic trip unit, 2 versions:

- Z version: fixed thermal and fixed magnetic
- U version: adjustable thermal and fixed magnetic

DIN rail adaptor available for DIN rail mounting

Connection capacity

- $95 \mathrm{~mm}^{2}$ rigid cables
- $70 \mathrm{~mm}^{2}$ flexible cables collar terminals

Comply with IEC 60947-2
Trip-free switches
Allows tripping at distance using a voltmetrical trip unit (optional) AC22/23A
Comply with IEC60947-3

MCCBs x160 18kA

Description	Rating In	Cat. Ref.	
		3 P	4 P
breaking capacity	16A	HDA016Z	HDA017Z
Ics : 18 kA	20A	HDA020Z	HDA021Z
(400/415 V AC)	25A	HDA025Z	HDA026Z
	32A	HDA032Z	HDA033Z
fixed thermal	40A	HDA040Z	HDA041Z
1 x In	50A	HDA050Z	HDA051Z
fixed magnetic	63A	HDA063Z	HDA064Z
> $10 \times \mathrm{ln}$	80A	HDA080Z	HDA081Z
	100A	HDA100Z	HDA101Z
	125A	HDA125Z	HDA126Z
	160A	HDA160Z	HDA161Z

adjustable thermal
0.63-0.8-1 x In
fixed magnetic
$>10 \times \mathrm{In}$

25 A	HDA025U	HDA026U
40 A	HDA040U	HDA041U
63 A	HDA063U	HDA064U
80 A	HDA080U	HDA081U
100 A	HDA100U	HDA101U
125 A	HDA125U	HDA126U
160 A	HDA160U	HDA161U

HDA161U
MCCBs x160 25kA

Description	Rating In	Cat. Ref.	
		3P	4 P
breaking capacity	16A	HHA016Z	HHA017Z
Ics : 20 kA	20A	HHA020Z	HHA021Z
(400/415 V AC)	25A	HHA025Z	HHA026Z
	32A	HHA032Z	HHA033Z
fixed thermal	40A	HHA040Z	HHA041Z
1 x In	50A	HHA050Z	HHA051Z
fixed magnetic	63A	HHA063Z	HHA064Z
$>10 \times \mathrm{ln}$	80A	HHA080Z	HHA081Z
	100A	HHA100Z	HHA101Z
	125A	HHA125Z	HHA126Z
	160A	HHA160Z	HHA161Z

adjustable thermal			
$0.63-0.8-1 \times \mathrm{In}$			
fixed magnetic	25 A		HHA025U

MCCBs and trip-free switches $\times 160$

Add-on blocks for $\times 160$ devices
These devices are intended to be fixed on the right side of the devices.
Type $A \backsim$ and HI
For fault component pulsating current.
HI (High Immunity):
the products with "reinforced immunity" reduce the unexpected tripping when they protect equipment generating disturbances (micro-processing, electronic ballast...)
Fixed version: 300 mA sensitivity and instantaneous tripping

Adjustable version: adjustable sensitivity and tripping.
Test button for differential functioning check.
Mechanical test button
LED or at distance signal for tripping or advance warning
(25-50\% I $\Delta \mathrm{n}$).

Assembly and disassembly facilitated by the drawer assembly system. The terminal cover is dependent of the add-on block.

Connection capacity

$95 \mathrm{~mm}^{2}$ rigid cables
$70 \mathrm{~mm}^{2}$ flexible cables

Comply with IEC 60947-2
annexe B .

	MCCBs $\times 160$ 40kA			
	Description	Rating In	Cat. Ref.	
			3P	4P
	adjustable thermal	25A	HNA025U	HNA026U
2 man 为)	0.63-0.8-1 ln	40A	HNA040U	HNA041U
	fixed magnetic	63A	HNA063U	HNA064U
	> $10 \times \ln$	80A	HNA080U	HNA081U
\%		100A	HNA100U	HNA101U
		125A	HNA125U	HNA126U
		160A	HNA160U	HNA161U
\%	Trip-free switches x160			
HNA125Z	Description	Rating In	Cat. Ref.	
				4 P
	suitable for	125A	HCA125Z	HCA126Z
	AC22A / AC 23A	160A	HCA160Z	HCA161Z
	Ue: 415 V AC			
	Icw (1s): 2 kA			

MCCBs and trip-free switches x160

Indication contacts

- 1 changeover switch (ON/OFF):
indicates the position of the MCCB is "open" or "close".
- 1 changeover alarm contact:
indicates MCCB tripping

Coil connection

Connection capacity:
$0,75 \mathrm{~mm} 2$ flexible or rigid cables
Optional connection cables.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$.

Under voltage release

Allows the tripping of MCCBs or trip-free switches when voltage level drop between 35 and 70% of Un. Pick up voltage $0.85 \times$ Un

Direct rotary handle

- padlockable
- equipped with front cover and handle
- fixing without any additional screw

Extended rotary handle

- IP 55
- supplied complete with shaft and handle

Shunt trip

Remotes tripping of MCCBs or trip-free switches. Operating voltage: 0.7 to 1.1 x Un

HXA021H

HXA024H

Auxiliary contacts		
Description	Rating In	Cat. Ref.
	1 changeover contact (ON/OFF)	HXA021H
AX	250 V AC / 3A	
AL	125 V DC / 0,4A	
	$1 \mathrm{NO}+1 \mathrm{NC}$	
	1 changeover alarm contact	HXA024H
	250 V AC / 3A	
	125 V DC / 0,4A	
	$1 \mathrm{NO}+1 \mathrm{NC}$	
Shunt trips		
Description	Rating In	Cat. Ref.
SH	24 V DC	HXA001H
	200-240 V AC	HXA004H
Undervoltage releases UV		
Description	Rating In	Cat. Ref.
Undervoltage releases UV	24 V DC	HXA011H
	200-240 V AC	HXA014H
	380-450 V AC	HXA015H
Locking kit		
Description	Rating In	Cat. Ref.
Locking kit		HXA035H

HXA030H

HYA015H

Auxiliary contacts
Auxiliary contacts

Description Characteristics \begin{tabular}{lll}
Cat. Ref.

Direct rotary handle \& | padlockable handle |
| :--- |
| max $\varnothing 6 \mathrm{~mm}$ | \& HXA030H

\end{tabular}\quad HXA030H

Moulded case circuit breakers x250,
Type of trip unit:

- U version: adjustable thermal and magnetic

3 P and 4P
Mechanical test button, lockable settings, integrated padlocking handle $\varnothing 4 \mathrm{~mm}$. Comply with IEC 60 947-2.

Connection:

Directly on copper cable terminal, with end lug max. width: 25 mm
Connection capacity: $185 \mathrm{~mm}^{2}$ rigid cables
Comply with IEC 60947-2.
Collar terminals

Trip-free switches

Allows tripping at distance using a voltmetrical trip unit (optional)
Complies with IEC 60 947-3, AC 22/23A

Add-on blocks for x250 devices
These devices are intended to be fixed at the bottom of the devices.
Type $\mathrm{A} \cong$ and HI
for fault component dc pulsating current and the products with "reinforced immunity". Adjustable sensitivity and tripping.
Test button for differential functioning check.
Mechanical test button LED or at distance signal for tripping or advance warning (25 - $50 \% \mid \Delta n$)

Comply with IEC 60947-2
annexe B
\qquad

HNB100U

Auxiliary contacts

Description	Characteristics	In	Cat. Ref.	
			3 P	4P
MCCBs $\times 250$ 25kA	fixed thermal	200A	HHB200Z	HHB201Z
	1 x In			
		250A	HHB250Z	HHB251Z
	fixed magnetic			

MCCBs x250 40kA	adjustable thermal $0.63-0.8-1 \times \ln$	100A	HNB100U	HNB101U
		125A	HNB125U	HNB126U
	adjustable magnetic			
	6-8-10-13x \ln (100-200A)	160A	HNB160U	HNB161U
	5-7-9-11 x \ln (250A)			
		200A	HNB200U	HNB201U
	3P, 3 trip units			
	4 P ,	250A	HNB250U	HNB251U

neutral setting: 0 or 100\%

Trip-free switches x250	capacity suitable for AC 22/23A	250 A	HCB250Z	HCB251Z
	Icw (1s): 3 kA	160 A	HBB161H	

Add-on blocks
adjustable sensitivity $I \Delta n$: 0.03-0.1 250A
$-0.3-1-3-6 A$
adjustable tripping:

- instantaneous
- time delay: 0.06-0.15-0.3-0.5-

1 sec

Accessories for MCCBs and trip-free switches x250

Indication contacts

- 1 changeover switch (ON/OFF):
indicates the position of the MCCB is "open" or "closed".
- 1 changeover alarm contact:
indicates MCCB tripping.

Coil connection

Connection capacity: $0.75 \mathrm{~mm}^{2}$ flexible or rigid cables
Optional connection cables.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$.

Shunt trip

Remotes tripping of MCCBs or trip-free switches
Operating voltage: 0.7 to $1.1 \times$ Un

Under voltage release

Allows the tripping of MCCBs or trip-free switches when voltage level drop between 35 and 70% of Un. Pick up voltage $0.85 \times$ Un

Direct rotary handle

- padlockable
- equipped with front cover and handle
- fixing without any additional screw

Extended rotary handle

IP 55

- supplied complete with shaft and handle

		Description	Characteristics	Cat. Ref.
		Auxiliary contacts AX AL	$\begin{aligned} & 1 \text { changeover contact } \\ & 250 \mathrm{~V} \text { AC / 3A } \\ & 125 \mathrm{VC} / 0,4 \mathrm{~A} \\ & 1 \mathrm{NO}+1 \mathrm{NC} \end{aligned}$	HXA021H
			1 changeover alarm contact 250 V AC / 3A 125 V DC / 0,4A $1 N O+1 N C$	HXA024H
HXA021H	HXA024H			

HXA014H

$\mathrm{HXB0} 22 \mathrm{H}$

Shunt trips	SH V DC	HXA001H
Undervoltage releases UV	$\frac{200-240 \mathrm{VAC}}{}$	HXA004H
$\frac{24 \mathrm{VDC}}{380-240 \mathrm{VAC}}$	HXA011H	
Direct rotary handles	padlockable handle max $\varnothing 6 \mathrm{~mm}$	HXA015H

Extended rotary handles	padlockable handle $\max \varnothing 8 \mathrm{~mm}$		HXB031H
Motor operators	230-240V AC		HXB042H
Extended connections	spreaders	HYB011H	HYB012H
		(3P)	(4P)
Interphase barriers	set of 3 height: 97 mm		HYB019H

Moulded case circuit breakers h250
Thermal magnetic trip unit: thermal adjustment: 0.63 to 1 In magnetic adjustment: 6-8-10-13 x In
3P \& 4P / 3P (for 25kA)
Mechanical test button, lockable settings,

Connection:
Directly on copper cable terminal, with end lug max. width: 25 mm

Comply with IEC 60947-2

HHG250H

HNG125H

Description	Characteristics	In	Cat. Ref. 3P	4P
MCCBs h250 25kA	breaking capacity	63A	HHG063H	
TM	Icu : $25 \mathrm{kA}(400 / 415 \mathrm{~V} \mathrm{AC})$	100A	HHG100H	
	Ics: 19 kA	125A	HHG125H	
		160A	HHG160H	
	adjustable thermal 0.63 to $1 \times \ln$	200A	HHG200H	
		250A	HHG250H	

MCCBs h250 50kA	breaking capacity	63A	HNG063H	
TM	Icu : 30 kA (20-32A)	100A	HNG100H	
	Icu : 50 kA	125A	HNG125H	-
	(400/415 V AC)	160A	HNG160H	
	Ics. 25 KA	200A	HNG200H	
	adjustable thermal	250A	HNG250H	

adjustable thermal
HNG250H
0.63 to $1 \times \mathrm{ln}$
adjustable magnetic
6-8-10-13x \ln

MCCBs h250 65kA	breaking capacity		
TM	Icu: $65 \mathrm{kA}(400 / 415 \mathrm{VAC})$	\quad	200A
:---			
250 A			

Ics: 36 kA
adjustable thermal
0.63 to $1 \times \mathrm{In}$
adjustable magnetic
6-8-10-13x In

MCCBs h250

Moulded case circuit breakers h250

- Electronic trip unit LSI:

L - Long time delay - protection against overloads: adjustable: Ir from 0.4 to $1 \times \ln$
S - Short time delay - protection against short-circuits: adjustable Isd from 2.5 to
$10 \times \mathrm{lr}$
time delay 0.1 or 0.2 s I
Instantaneous - definitive time delay tripping maximum threshold in case of shortcircuit (li max $=13 \times \ln$)
2 values setting:

- Ir setting
- predefined curve selection
(9 possibilities)

3P3d and 4P3d/4dN/2 (adjustable neutral
0-50-100\%)
Mechanical button,
Sealable settings.

Not for use in TPN and panel boards.

Connection:

Directly on copper cable terminal, with end lug max. width: 25 mm

Comply with IEC 60947-2.

HNC125H

HEC250H
Description \quad Characteristics \quad In Ref

MCCBs h250 50kA
breaking capacity
Icu : $50 \mathrm{kA}(400 / 415 \mathrm{~V} \mathrm{AC})$
lcs: 25 kA
adjustable overload
$\mathrm{Ir}=0.4$ to $1 \times \mathrm{ln}$
adjustable short circuit
2.5 to $10 \times \mathrm{Ir}$

3P, 3 trip units \& 4P, 3 trip units

MCCBs h250 70kA
breaking capacity
Icu : $70 \mathrm{kA}(400 / 415 \mathrm{~V} \mathrm{AC})$
Ics: 70 kA
adjustable overload
$\mathrm{Ir}=0.4$ to $1 \times \mathrm{ln}$
adjustable short circuit
2.5 to $10 \times \mathrm{Ir}$

3P, 3 trip units \& 4P, 3 trip units

40 A	HEC040H	HEC041H
125 A	HEC125H	HEC126H
250 A	HEC250H	HEC251H

40 A	HNC040H	HNC041H
125 A	HNC125H	HNC126H
250 A	HNC250H	HNC251H

Accessories for MCCBs h250

Indication contacts

- 1 changeover switch (ON/OFF): indicates the position of the MCCB is "open" or "close".
- 1 changeover alarm contact: indicates MCCB tripping.

Coil connection

Connection capacity:
$0.75 \mathrm{~mm}^{2}$ flexible or rigid cables
Optional connection cables.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$.

Shunt trip

Remotes tripping of MCCBs or trip-free switches.
Operating voltage: 0.7 to $1.1 \times$ Un

Under voltage release

Allows the tripping of MCCBs or trip-free switches when voltage level drop between 35 and 70\% of Un.
Pick up voltage $0.85 \times$ Un

Direct rotary handle

- padlockable
- equipped with front cover and handle
- fixing without any additional screw

Extended rotary handle

IP 55

- supplied complete with shaft and handle

Moulded case circuit breakers h400, h630
Thermal magnetic trip unit TM:

- thermal adjustment:
from 0.63 to $1 \times \ln$
- magnetic adjustment: from 6 to $12 \times \mathrm{ln}$

Connection:
Directly on copper cable terminal, with end lug max. width: 30 mm
Comply with IEC 60947-2

HND400H

Moulded case circuit breakers h400, h630

- Electronic trip unit LSI:

L - Long time delay - protection against overloads: adjustable: Ir from 0,4 to $1 \times \mathrm{ln}$
S - Short time delay - protection against short-circuits: adjustable Isd from 2.5 to
$10 \times \operatorname{lr}(400 \mathrm{~A}), 2.5$ to $8 \times \operatorname{lr}(630 \mathrm{~A})$ time delay 0.1 or 0.2 s
I- Instantaneous - definitive time delay tripping maximum threshold in case of short-circuit (li max $=13 \times \mathrm{In}$)
2 values setting:

- Ir setting
- predefined curve selection (7
possibilities)
3P3d and 4P3d/4dN/2 (adjustable neutral 0-50-100\%)
Mechanical button,
Sealable settings

Connection:

Directly on copper cable terminal, with end lug max. width: 30 mm Comply with IEC 60947-2

Trip-free switches
Allows tripping at distance using a voltmetrical trip unit (optional)
Comply with IEC 60947-3
AC 23A / DC 22A

Add-on blocks

For h630 (LSI) devices
These devices are intended to be fixed at the bottom of the devices.

Fixed version: 300mA
sensitivity and instantaneous tripping
Adjustable version: sensitivity from 30mA to 6A, tripping from instantaneous to 1 s delay.
Test button for differential functioning check.
Mechanical test button.
LED or remote signal for tripping or advance warning ($25-50 \% \mathrm{l} \Delta \mathrm{n}$).
Type A (for fault component DC pulsating current) and HI
(reinforced immunity against unexpected tripping).
Comply with IEC 60947-2

Accessories for

Indication contact

- 1 changeover switch (ON/OFF): indicates the position of the MCCB is "open" or "close"
- 1 changeover alarm contact: indicates MCCB tripping

Coil connection

Connection capacity:
0.75 mm 2 flexible or rigid cables

Optional connection cables
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$.

Shunt trip

Remotes tripping of MCCBs or trip-free switches
Operating voltage:
0.7 to $1.1 \times$ Un

| | Characteristics |
| :--- | :--- | :--- |

Moulded case circuit breakers h1000

- Electronic trip unit LSI:

L - Long time delay - protection against overloads: adjustable: Ir from 0,4 to $1 \times \ln$
S - Short time delay - protection against short-circuits: adjustable Isd from 2.5 to
$10 \times \operatorname{Ir}(630-800 A), 2.5$ to $8 \times \operatorname{Ir}(1000 A)$
time delay 0.1 or 0.2 s
I - Instantaneous - definitive time delay tripping maximum threshold in case of short-circuit (li max $=12 \times \mathrm{In}$)
2 values setting:

- Ir setting
- predefined curve selection
(7 possibilities)
3P3d and 4P3d/4dN/2 (adjustable neutral
0-50-100\%)

Mechanical button,
Sealable settings

Connection

Directly on copper cable terminal, with end lug max. width: 50 mm

Comply with IEC 60947-2

Trip-free switches
Allows tripping at distance using a voltmetrical trip unit (optional)

Comply with IEC 60 947-3
AC 23A / DC 22A

HNE970H
Description Characteristics In Cat. Ref.

MCCBs h1000 50kA	breaking capacity	630A	HNE630H*	
LSI	Icu : 50 kA (400/415 V AC)			
	Ics: 50 kA	800A	HNE800H	HNE801H
	adjustable overload	1000A	HNE970H	HNE971H

adjustable short circuit
2.5 to $10 \times \operatorname{lr}(630-800 A)$
2.5 to $8 \times \operatorname{lr}(1000 A)$
time delay: 0.1-0.2 s
neutral setting from 0-50 to 100\%

* without straight extended connection

MCCBs h1000 70kA	breaking capacity	800A	HEE800H	HEE801H
LSI	Icu : 70 kA (400/415 V AC)			
	Ics: 50 kA	1000A	HEE970H	HEE971H
	adjustable overload			
	$\mathrm{lr}=0.4$ to $1 \times \mathrm{ln}$			
	adjustable short circuit			
	2.5 to $10 \times \operatorname{lr}$ (800A)			
	2.5 to $8 \times \operatorname{lr}$ (1000A)			
	time delay: 0.1-0.2 s			
	neutral setting from			
	0-50 to 100\%			

HEE970H

LSI
$0-50$ to 100\%

Trip-free switches	suitable for	800A	HCE800H	HCE801H
AC $22 \mathrm{~A} / \mathrm{AC} 23 \mathrm{~A}$				
$\mathrm{Ue}: 415 \mathrm{VAC}$				
$\mathrm{Icw}(0.3 \mathrm{~s})=10 \mathrm{kA}$	1000 A	HCE970H	HCE971H	

Accessories for

Indication contacts

- 1 changeover switch (ON/OFF):
indicates the position of the MCCB is "open" or "close"
1 changeover alarm contact:
indicates MCCB tripping

Coil connection

Connection capacity:
$0.75 \mathrm{~mm}^{2}$ flexible or rigid cables
Optional connection cables
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$

Shunt trip

Remotes tripping of MCCBs or trip-free switches.
Operating voltage:
0.7 to 1.1 x Un

Under voltage release

Allows the tripping of MCCBs or trip-free switches when voltage level drop between 35 and 70% of Un. Pick up voltage $0.85 \times$ Un

		Description	Characteristics	Cat. Ref.
		Auxiliary contacts AX AL	1 changeover contact 250 V AC / 3A 125 V DC / 0,4A $1 \mathrm{NO}+1 \mathrm{NC}$	HXC021H
-3			$\begin{aligned} & 1 \text { changeover alarm contact } \\ & 250 \text { V AC / 3A } \\ & 125 \text { V DC / O,4A } \\ & 1 \text { NO + } 1 \text { NC } \end{aligned}$	HXC024H
HXC021H	HXC024H			

HXC004H

HXE014H

Shunt trips	24 V DC	HXC001H
	$200-240 \mathrm{VAC}$	HXC004H

24 V DC	HXE011H
$220-240$ V AC	HXE014H
$380-415$ V AC	HXE015H

Direct rotary handle
padlockable

- equipped with front cover and handle
- fixing without any additional screw

Extended rotary handle

- IP 55
- supplied complete with shaft and handle

	Description	Characteristics	Cat. Ref. $3 P$	4P
	Interphase barriers	set of 3	HYE019H	HYE019H
	Direct rotary handles	padlockable handle		HXE030H
	Extended rotary handles	padlockable handle		HXE031H
HXEO3OH				
	Motor operators	100-240V AC		HXE042H

Moulded case circuit breakers h1600,
selection and protection

- Electronic trip unit LSI:

L - Long time delay - protection against overloads: adjustable: Ir from 0.4 to $1 \times \ln$
S - Short time delay - protection against short-circuits: adjustable Isd from 2.5 to
$10 \times$ Ir time delay 0.1 or 0.2 s
I - Instantaneous - definitive time delay tripping maximum threshold in case of short-circuit (li max $=12 \times \mathrm{In}$)
2 values setting:
Connection
Directly on copper cable terminal, with end lug max. width: 60 mm

Comply with IEC 60947-2

Trip-free switches
Allows tripping at distance using a voltmetrical trip unit (optional)

Comply with IEC 60947-3
AC 23A / DC 22A

- predefined curve selection
(7 possibilities)
3P3d and 4P3d/4dN/2 (adjustable neutral 0-50-100\%)
Mechanical button
Sealable settings

Indication contacts

- 1 changeover switch (ON/OFF):
indicates the position of the MCCB is "open" or "close".
- 1 changeover alarm contact:
indicates MCCB tripping
Coil connection
Connection capacity:
$0.75 \mathrm{~mm}^{2}$ flexible or rigid cables
Optional connection cables.
The cable capacity of the terminals is 0.5 to $1.25 \mathrm{~mm}^{2}$

Shunt trip

Remotes tripping of MCCBs or trip-free switches.
Operating voltage:
0.7 to $1.1 \times$ Un

Under voltage release

Allows the tripping of MCCBs or trip-free switches when voltage level drop between 35 and 70% of Un.
Pick up voltage $0.85 \times$ Un

Direct rotary handle

- padlockable

- equipped with front cover and handle
- fixing without any additional screw

Extended rotary handle

- IP 55
- supplied complete with shaft and handle

Rear connection: included

[^1]HXFO39H

hヨ MCCBs feature loaded

Provides safe and easy solution for low voltage electrical circuit protection. The state of the art circuit breakers offer both designers and installers wide range of features and benefits. Special attention has been given to ergonomics, especially with the integration of these devices in novello+ distribution boards.

Frame			$\times 160$				x250			h250 TM		
Product				MCCB			$\begin{array}{\|l} \hline \text { Switch } \\ \hline \text { HCB } \end{array}$	MCCB		MCCB		
Reference			HCA	HDA	HHA	HNA		HHB	HNB	HHG	\|HNG	HEG
Number of poles		[No.]	3-4	1-2-3-4	1-2-3-4	3-4	3-4			3-4		
Electrical characteristics												
Rated current	In	[A]					250			250		
Current rated range		[A]	125-160 16-125 (1P), 16-160 (2,3,4				250 100-250			12,5-250		
Rated service voltage, (AC)	Ue	M	220-440				$220-440$			220-690		
Frequency	f	[Hz]	50/60				50/60			50/60		
Rated insulation voltage	Ui	[690				800			800		
Rated impulse withstand voltage	Uimp	[kV]	8				8			8		
Rated ultimate short-circuit breaking capacity, (Icu)												
(AC) $50-60 \mathrm{~Hz} 220 / 230 \mathrm{~V}$	Icu	[kA]	-	25	35	85	-	35	85	35	85	85
(AC) $50-60 \mathrm{~Hz} 380 / 415 \mathrm{~V}$	Icu	[kA]	-	18	25	40	-	25	40	25	50	65
(AC) $50-60 \mathrm{~Hz} \mathrm{480/500/525} \mathrm{~V}$	Icu	[kA]	-	6	17.5	12.5	-	-	10	10	25	25
(AC) $50-60 \mathrm{~Hz} 660 / 690 \mathrm{~V}$	Icu	[kA]	-	-	-	6	-	-	4	-	7.5	7.5
(DC) $250 \mathrm{~V}-2$ poles in series	Icu	[kA]	-	12.5	20	25	-	25	25	25	40	40
Rated service short-circuit breaking capacity, (Ics)												
(AC) $50-60 \mathrm{~Hz} 220 / 230 \mathrm{~V}$	Ics	[kA]	-	25	25	40	-	25	40	27	65	85
(AC) $50-60 \mathrm{~Hz} 380 / 415 \mathrm{~V}$	Ics	[kA]	-	18	20	20	-	20	20	19	25	36
(AC) $50-60 \mathrm{~Hz} 480 / 500 / 525 \mathrm{~V}$	Ics	[kA]	-	3	4	7.5	-	-	7.5	7.5	25	25
(AC) $50-60 \mathrm{~Hz} 660 / 690 \mathrm{~V}$	Ics	[kA]	-	-	-	3	-	-	2	-	7.5	7.5
(DC) $250 \mathrm{~V}-2$ poles in series	Ics	[kA]	-	7	10	13	-	13	13	19	40	40
Rated short-circuit making capacity	1 cm	[kA]	2,8	-	-	-	9	-	-	-		
Rated short-time withstand current for 1s	Icw	[kA]	2	-	-	-	3	-	-	-		
Category of use (EN 60947-2)			A	A			A	A		A		
Calibration temperature			$50^{\circ} \mathrm{C}$				$50^{\circ} \mathrm{C}$			$50^{\circ} \mathrm{C}$		
Derating $40^{\circ} \mathrm{C}$			100\%	100\%			100\%	100\%		100\%		
$50^{\circ} \mathrm{C}$			100\%				100\%					
$55^{\circ} \mathrm{C}$			-	95\%			-	94\%		100\%		
$60^{\circ} \mathrm{C}$			-	93\%			-	91\%		91\%		
$65^{\circ} \mathrm{C}$			-	90\%			-	88\%		88\%		
Suitability for isolation			ok				ok			ok		
Electric endurance in number of cycles			10000				10000			10000		
Mechanical endurance in number of operations			20000				20000			30000		
Operating temperature			-25 to $+70^{\circ} \mathrm{C}$				-25 to $+70^{\circ} \mathrm{C}$			-25 to $+70^{\circ} \mathrm{C}$		
Storage temperature			-35 to $+70^{\circ} \mathrm{C}$				-35 to $+70^{\circ} \mathrm{C}$			-35 to $+70^{\circ} \mathrm{C}$		
Power loss (at In for 3P) [W]							60			65		
Reference standard			IEC60947-3	IEC 60947-2			IEC60947-3	IEC 60947-2		IEC 60947-2		
Releases: switch			ok	-			ok			- 6081		
Releases: TM (thermomagnetic)				ok			ok			ok		
T fixed, M fixed			-	ok			ok			-		
T adjustable, M fixed			-	ok			- -			-		
T adjustable, M adjustable			-	,			-	ok		ok		
Thermal adjustment value			-	0,63 to $1 \times$ In			-	0,63 to $1 \times \mathrm{ln}$		ok 0,63 to $1 \times$ In		
Magnetic adjustment value			-	-			-	$\begin{aligned} & 6-8-10-13 \times \ln (200 A) \\ & 5-7-9-11 \ln (250 \mathrm{~A}) \\ & \text { 6 } \end{aligned}$		6-8-10		
Releases: LSI (electronic)			-	-			-	-		-		
Long delay			-	-			-	-		-		
Short delay			-	-			-	-		-		
Time delay			-	-			-	-		-		
Terminations												
Standard terminal type			cage				lugs			lugs		
Maximum terminal capacity			95 mm²				$185 \mathrm{~mm}^{2}$ (c)			120 m		
Terminal width		mm	-				25			25		
Terminal shields			ok				ok			ok		
Cage terminal			integrated				ok			ok		
Extended connections			ok				ok			ok		
Rear connections			no				ok			ok		
Dimensions												
Height		mm	130				165			165		
Width	1 P	mm	-	25		-	-			-		
	2 P	mm	-	50		-	-			-		
	3 P	mm	75				105			105		
	4 P	mm	100				140			140		
Depth		mm	68				68			68		
Weight	1 P	kg	-	0,29		-	-			-		
	2 P	kg	-	0,48		-	-			-		
	3 P	kg	0,715				1,3			1,5		
	4 P	kg	0,95				1,6			1,9		

Product Frame		Add-on blocks H3			
		x160	$\times 160$	x250	h630
Number of poles		3, 4	3, 4	4	4
Tripping access		mechanical	mechanical	mechanical	mechanical
Standards CEI/EN 60947-2 appendix B		ok	ok	ok	ok
Electrical characteristics					
Max rated current (40) In A	In	125A	125-160A	160-250A	400A - 500A
Rated service voltage Ue V AC (50/60Hz)	Ue	240-415V	240-415V	240-415V	240-415V
Mechanical characteristics					
Top and bottom supply		ok	ok	ok	ok
For tripping, no additional external electrical sources		ok	ok	ok	ok
Possible operating with 2 active phases		ok	ok	ok	ok
Settings					
Sensitivity $1 \Delta n$	$1 \Delta \mathrm{n}(\mathrm{A})$	300 mA	$\begin{aligned} & 0.03,0.1,0.3,1, \\ & 3,6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.03,0.1,0.3,1, \\ & 3,6 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 0.03,0.1,0.3,1, \\ & 3,6 \mathrm{~A} \end{aligned}$
Time delay Δt	$\Delta \mathrm{t}$ (s)	inst.	$\begin{aligned} & \text { inst., 0.06, 0.15, } \\ & 0.3,0.5,1 \end{aligned}$	$\begin{aligned} & \text { inst., 0.06, 0.15, } \\ & 0.3,0.5,1 \end{aligned}$	$\begin{aligned} & \text { inst., 0.06, 0.15, } \\ & 0.3,0.5,1 \end{aligned}$
Max. opening time	ms	10	10	10	10
Delay add-on block is not possible if $1 \Delta \mathrm{n}=30 \mathrm{~mA}$		/	ok	ok	ok
Selective product		no	ok	ok	ok
Mechanical test button		ok	ok	ok	ok
Isolating test without cable removal		ok	ok	ok	ok
Electrical test button		ok	ok	ok	ok
Reset button		ok	ok	ok	ok
Sealable setting button		no	ok	ok	ok
Isolation level signaling by led 25 and 50\%		no	ok	ok	ok
In running signalisation by led		no	ok	ok	ok
Residual default signaling contact		ok	ok	ok	ok
Signaling contact 50\% Idn		no	ok	ok	ok
Anti-transient	type AC	ok	ok	ok	ok
Pulsating current	type A	ok	ok	ok	ok
High immunity	type HI	yes	yes	yes	yes
$-25^{\circ} \mathrm{C}$		ok	ok	ok	ok
Accessories and connection					
Steel terminal cage ($\times 3 / \times 4$)		ok (included)	ok (included)	accessories	accessories
Connection by lugs		no	no	ok	ok
Extended connections (x4)		ok	ok	ok	ok
Spreaders (x4)		ok	ok	ok	ok
Terminal covers (3P/4P)		no	no	ok	ok
Interphase barriers ($\times 3$)		ok	ok	ok	ok
Rigid cables connection capacity mm^{2}		4-95	4-95	35-185	35-240
Flexible cables connection capacity mm^{2} (with terminal)		4-70	4-70	35-150	35-185
Tightening torque Nm		6	6	12	22
Copper bar (width) in mm		no	no	25	30
Mounting					
Clips on DIN rail		ok	ok	no	no
Fixed on mounting plate		no	no	ok	ok
Fixation type		side	side	bottom	bottom
Mounting by customer		ok	ok	ok	ok
Dimensions and weight					
Dimensions (LxHxD) in mm	L	100	100	140	184
Side mounted 4P	H	165	165	107,5	133
	D	95	95	85	110
Weight	3P	1,4	1,4	/	1
	4 P	1,55	1,55	1,2	2,4

			Series	HDx	HHx	HNx
	Pole	Trip unit	$\ln \mathrm{A}$	18kA	25kA	40kA
$\times 160$	3P	TM fix/fix	16	HDA016Z	HHA016Z	HNA016Z
			20	HDA020Z	HHAO20Z	HNA020Z
			25	HDA025Z	HHA025Z	HNA025Z
			32	HDA032Z	HHA032Z	HNA032Z
			40	HDA040Z	HHAO40Z	HNA040Z
			50	HDA050Z	HHA050Z	HNA050Z
			63	HDA063Z	HHA063Z	HNA063Z
			80	HDA080Z	HHA080Z	HNA080Z
			100	HDA100Z	HHA100Z	HNA100Z
			125	HDA125Z	HHA125Z	HNA125Z
			160	HDA160Z	HHA160Z	HNA160Z
		TM adj/fix	16-20-25	HDA025U	HHA025U	HNA025U
			25-32-40	HDA040U	HHAO4OU	HNAO4OU
			40-50-63	HDA063U	HHA063U	HNA063U
			50-63-80	HDA080U	HHA080U	HNA080U
			63-80-100	HDA100U	HHA100U	HNA100U
			80-100-125	HDA125U	HHA125U	HNA125U
			100-125-160	HDA160U	HHA160U	HNA160U
	$\begin{aligned} & 4 \mathrm{P} \\ & 100 \% \end{aligned}$	TM fix/fix	16	HDA017Z	HHA017Z	HNA017Z
			20	HDA021Z	HHA021Z	HNA021Z
			25	HDA026Z	HHA026Z	HNA026Z
			32	HDA033Z	HHA033Z	HNA033Z
			40	HDA041Z	HHA041Z	HNA041Z
			50	HDA051Z	HHA051Z	HNA051Z
			63	HDA064Z	HHA064Z	HNA064Z
			80	HDA081Z	HHA081Z	HNA081Z
			100	HDA101Z	HHA101Z	HNA101Z
			125	HDA126Z	HHA126Z	HNA126Z
			160	HDA161Z	HHA161Z	HNA161Z
		TM adj/fix	16-20-25	HDA026U	HHA026U	HNA026U
			25-32-40	HDA041U	HHA041U	HNA041U
			40-50-63	HDA064U	HHA064U	HNA064U
			50-63-80	HDA081U	HHA081U	HNA081U
			63-80-100	HDA101U	HHA101U	HNA101U
			80-100-125	HDA126U	HHA126U	HNA126U
			100-125-160	HDA161U	HHA161U	HNA161U
$\times 250$	3P	TM fix/fix	100		HHB100Z	HNB100Z
			125		HHB125Z	HNB125Z
			160		HHB160Z	HNB160Z
			200		HHB200Z	HNB200Z
			250		HHB250Z	HNB250Z
		TM adj/adj	63-80-100			HNB100U
			80-100-125			HNB125U
			100-125-160			HNB160U
			125-160-200			HNB200U
			160-200-250			HNB250U
	$\begin{aligned} & \text { 4P 0\% - 4P } \\ & 100 \% \end{aligned}$	TM fix/fix	100		HHB101Z	HNB101Z
			125		HHB126Z	HNB126Z
			160		HHB161Z	HNB161Z
			200		HHB201Z	HNB201Z
			250		HHB251Z	HNB251Z
		TM adj/adj	63-80-100			HNB101U
			80-100-125			HNB126U
			100-125-160			HNB161U
			125-160-200			HNB201U
			160-200-250			HNB251U

			Series	HHx	HNx	HEx
	Pole	Trip unit	In A	25kA	30kA - 50kA	65kA* - 70kA
			12,5-16-20	HHGO20H	HNG020H	
			20-25-32	HHG032H	HNG032H	
			32-40-50	HHG050H		HEG050H*
			40-50-63	HHG063H	HNG063H	HEG063H*
		TM adj/adj	63-80-100	HHG100H	HNG100H	HEG100H*
			80-100-125	HHG125H	HNG125H	HEG125H*
	$3 P$		100-125-160	HHG160H	HNG160H	HEG160H*
			125-160-200	HHG200H	HNG200H	HEG200H*
			160-200-250	HHG250H	HNG250H	HEG250H*
			16-40		HNCO4OH	HEC040H
		LSI	50-125		HNC125H	HEC125H
250			100-250		HNC250H	HEC250H
h250			12,5-16-20		HNG021H	
			20-25-32		HNG033H	
			32-40-50		HNG051H	HEG051H
			40-50-63		HNG064H	HEG064H
		TM adj/adj	63-80-100		HNG101H	HEG101H
			80-100-125		HNG126H	HEG126H
	4P 0\%		100-125-160		HNG161H	HEG161H
			125-160-200		HNG201H	HEG201H
			160-200-250		HNG251H	HEG251H
			16-40		HNC041H	HEC041H
		LSI	50-125		HNC126H	HEC126H
			100-250		HNC251H	HEC251H
			160-200-250	HHD250H	HND250H	
			250-320-400	HHD400H	HND400H	
	3 P	TM adj/adj	160-400			HED 400 H
			250-630		HND630H	HED630H
h400-		LSI	160-400		HND400H	
	4P 0\%		160-200-250		HND251H	
	4P 0\%	TM adj/adj	250-320-400		HND401H	
	4P 0\% - 50\% -		160-400		HND401H	HED401H
	100%	LSI	250-630		HND631H	HED631H
			630		HNE630H	
	3P	LSI	800		HNE800H	HEE800H
h1000			1000		HNE970H	HEE970H
h1000			630		HNE631H	
	$\begin{aligned} & \text { 4P 0\% - 50\% - } \\ & 100 \% \end{aligned}$	LSI	800		HNE801H	HEE801H
			1000		HNE971H	HEE971H
h1600	3P	LSI	1250		HNF980H	HEF980H
			1600		HNF990H	HEF990H
	$\begin{aligned} & \text { 4P 0\% - 50\% - } \\ & 100 \% \end{aligned}$	LSI	1250		HNF981H	HEF981H
			1600		HNF991H	HEF991H

Trip-free switches and add-on blocks for 7 ㄹ references guide

Series				$\times 160$	x250	h630	h1000	h1600	
Product	Version	Poles	\ln A						
Trip-free switches		3 poles	125	HCA125Z					
		160	HCA160Z						
		4 poles	125	HCA126Z					
		160	HCA161Z						
		3 poles	250		HCB250Z				
		4 poles	250		HCB251Z				
		3 poles	400			HCD400H			
		630			HCD630H				
		4 poles	400			HCD401H			
		630			HCD631H				
		3 poles	800				HCE800H		
		1000				HCE970H			
		4 poles	800				HCE801H		
		1000				HCE971H			
		3 poles	1250					HCF980H	
		1600					HCF990H		
		4 poles	1250					HCF981H	
		1600					HCF991H		
Add-on blocks	Side mounted		3 poles	125 fixed	HBA127H				
		125 adjustable		HBA125H					
		160 adjustable		HBA160H					
		4 poles	125 fixed	HBA128H					
			125 adjustable	HBA126H					
			160 adjustable	HBA161H					
	Bottom mounted	4 poles	160 adjustable		HBB161H				
			250 adjustable		HBB251H				
			400 adjustable			HBD401H			
			500 adjustable			HBD631H			

Switches and accessories for H

references guide

				Switches and accessories						
Products	Version	pole	$\mathrm{ln} \mathrm{A} / \mathrm{Ue} \mathrm{V}$	$\times 160$	x250	h250	h400-h630	h1000	h1600	
Auxiliaries	Shunt trip release	3/4P	24V DC	HXA001H		HXC001H			HXF001H	
			200-240V AC	HXA004H		HXC004H			HXF004H	
	Undervoltage release	3/4P	24V DC	HXA011H		HXC011H		HXE011H		
			200-240V AC	HXA014H		HXC014H		HXE014H		
			380-450V AC	HXA015H		HXC015H		HXE015H		
	Auxiliary contact	3/4P	1NO+1NC	HXA021H		HXC021H				
	Alarm contact	3/4P	1NO+1NC	HXA024H		HXC024H				
	Auxiliary contact - low level	3/4P	1NO+1NC	HXA025H		HXC025H				
	Alarm contact - low level	3/4P	1NO+1NC	HXA026H		HXC026H				
	Direct rotary handle			HXAO3OH	HXB030H	HXCO30H	HXD030H	HXEO30H	HXFO3OH	
	Extended rotary handle			HXA031H	HXB031H	HXC031H	HXD031H	HXE031H	HXF031H	
	Padlock			HXA039H		HXC039H	HXD039H		HXF039H	
	Motor operator	3/4P	24-48V DC	- $\mathrm{HXB040H}$ - $\mathrm{HXB042H}$		$\begin{aligned} & \mathrm{HXCO} O \mathrm{H} \\ & \mathrm{HXCO} 22 \mathrm{H} \end{aligned}$	HXDO40H	HXEO40H	HXFO4OH	
			200-240V AC			HXD042H	HXE042H	HXFO42H		
Connections	Extended spreader connection	3P		HYA014H	HYB011H		HYC011H	$\begin{aligned} & \text { HYD011H } \\ & (250-400 \mathrm{~A}) \\ & \text { HYD014H } \\ & (630 \mathrm{~A}) \end{aligned}$	-	-
		4P		HYA015H	HYB012H	-	$\begin{aligned} & \text { HYD012H } \\ & (250-400 \mathrm{~A}) \\ & \text { HYD015H } \\ & \text { (630A) } \end{aligned}$	-	-	
	Interphase barrier	3/4P	short	$\begin{aligned} & \hline \text { HYA019H } \\ & \hline \text { HYB019H } \end{aligned}$		- included	-	-	-	
			long			included	included	included		
	DIN rail adaptor	3/4P		HYA033H			-	-	-	-

		$220 / 240 \mathrm{~V}$ AC IEC 60 947-2	$380 / 415 \mathrm{~V} \mathrm{AC}$ IEC 60 947-2
HDA	Icu	25 kA	18 kA
	Ics	25 kA	18 kA
	Icu	35 kA	25 kA
	Ics	25 kA	20 kA
HCA	Icu	85 kA	40 kA
	Ics	30 kA	20 kA

Magnetic and thermal settings

For DIN rail mounting, use HYAO33H.
(1)

Magnetic adjustment fixed $>10 \times \ln$

In	$15-50 \mathrm{~A}$	$63-80 \mathrm{~A}$	$100-125 \mathrm{~A}$	160 A
Imag	600 A	1000 A	1500 A	1600 A

Thermal adjustment from 0,63 to $1 \mathrm{x} \ln$

Tripping curve

Thermal constraint curve at 400V (Let-through energy)
MCCB $\times 160$

Current limiting curve at 400V(Let-through pick current)
MCCB $\times 160$

	A (mm)	B (mm)	C (mm)
$1 P$	24.8	25	111
$2 P$	49.5	25	111
$3 P$	74.5	25	111
4 P	99.5	25	111

	A (mm)	B (mm)	C (mm)
$1 P$	24.4	57.5	60.5
$2 P$	49.5	57.5	60.5
$3 P$	74.5	57.5	60.5
4 P	99.5	57.5	60.5

	A (mm)	B (mm)	C (mm)
3P	106.5	50	60.5
4 P	141.5	50	60.5

Connection

Connection with end lugs

Interphase barriers

	L (mm)
HYA019H	50
HYB019H	97

Extended straight connections

Extended spreader connections

Direct rotary handle

Extended rotary handle

Auxiliaries

Auxiliaries for MCCBs and trip-free switches

Mounting combination for auxiliaries and releases

Add-on block x160

When associated with MCCB, the add-on block provides an earth fault protection and protects against electrical shocks by direct or indirect contacts.

The add-on blocks are protected against nuisance tripping caused by transient voltages. It's able to detect sinusoidal alternating currents and residual pulsating direct currents (A type). It also avoids miss tripping (HI type - High Immunity) \cong

Earth leakage current $(\mid \Delta \mathrm{n})$ and delay $(\Delta \mathrm{t})$ setting

$\begin{aligned} & \frac{7}{4} \\ & \infty \end{aligned}$	A ($1 \Delta n$)						
		0,03	0,1	0,3	1	3	6
	Inst.	OK	OK	OK	OK	OK	OK
	0.06	no	OK	OK	OK	OK	OK
	0.15	no	OK	OK	OK	OK	OK
	0.3	no	OK	OK	OK	OK	OK
	0.5	no	OK	OK	OK	OK	OK
	1	no	OK	OK	OK	OK	OK

Characteristics

Reset button :
Signals add-on block tripping and must be acknowledged before switching on the installation.

Test button for differential functioning :
Allows to check the electrical operating of the MCCB / Add-on block association.

Mechanical test button :
Allows to check the mechanical operating of the MCCB / Add-on block association.

LED signaling default current level in the installation: 25% (orange) and 50% (red) $I \Delta n$; green light to signal correct operating.

Remote tripping and advanced warning $(50 \% \mid \Delta n)$ signaling thanks to these contacts:

Add-on block operating

Exclusive drawer assembly system allows quick mounting and makes MCCB and add-on block association a complete monoblock unit.

Reinforced insulation connexion (class II)
System avoids the omission of terminal tightening

Dimensions

	$3 P$	$4 P$
$A(\mathrm{~mm})$	100	100
$B(\mathrm{~mm})$	174.5	199.5

MCCBs

		$220 / 240 \mathrm{~V}$ AC IEC 60 947-2	$380 / 415 \mathrm{~V} \mathrm{AC}$ IEC 60 947-2
HHB	Icu	35 kA	25 kA
	Ics	25 kA	40 kA
	Icu	85 kA	40 kA
	Ics	40 kA	20 kA
HCB	Icm	-	9 kA
	Icw	-	$3 \mathrm{kA}-1 \mathrm{~s}$

Magnetic and thermal settings

Thermal adjustment from 0.63 to $1 \times \ln$
Magnetic adjustment from 6 to $13 \times \ln (100-200 A)$
from 5 to $11 x \ln (250 A)$

	$100-200 A$	250 A
$\operatorname{Ir}(x \ln)$ ©	$0.63-0.8-1 x \ln$	
$\operatorname{li}(x \ln)(2)$	$6-8-10-13 x \ln$	$5-7-9-11 x \ln$
$x \ln / \mathrm{li}$ (3)	$0-100 \%$	
	$0-60 \%$	

Tripping curve
MCCB $\times 250$

Thermal constraint curve at 400V (Let-through energy)
MCCB $\times 250$

Current limiting curve at 400V (Let-through pick current)
MCCB $\times 250$

Dimensions
MCCB $\times 250$

Terminal covers for extended straight connections

	A (mm)	B (mm)	C (mm)
3 P	105	54.5	64
4 P	140	54.5	64

Accessories

Terminal cover for extended spreader connections

	A (mm)	B (mm)	C (mm)
3 P	147.5	54.5	64
4 P	196	54.5	64

Terminal cover for rear connections

	A (mm)	B (mm)	C (mm)
3P	105	5	64
4 P	140	5	64

Terminal covers for collar terminals

	A (mm)	B (mm)	C (mm)
3 P	105	28.5	64
4 P	140	28.5	64

MCCBs, trip-free switches

Connection

Extended straight and spreader connections

Rear connections

Connection by collar

Terminals for aluminium / copper conductors (accessory) HYB001H, HYB002H

\square	$\min .35 \mathrm{~mm}^{2}$	$\max .150 \mathrm{~mm}^{2}$	
\square	$35 \mathrm{~mm}^{2}$ to $50 \mathrm{~mm}^{2}=25 \mathrm{Nm}$ $60 \mathrm{~mm}^{2}$ to $185 \mathrm{~mm}^{2}=25 \mathrm{Nm}$		
8	3		

Connection with end lugs

Interphase barriers

Accessories

Rotary handle

Auxiliaries
Auxiliaries for MCCBs and trip-free switches

Mounting combination for auxiliaries and releases

AX
Auxiliary contact

Add-on blocks

When associated with MCCB, the add-on block provides an earth fault protection and protects against electrical shocks by direct or indirect contacts.

The add-on blocks are protected against nuisance tripping caused by transient voltages. It's able to detect sinusoidal alternating currents and residual pulsating direct currents (A type \sim). It also avoids miss tripping (HI type - High Immunity).

Characteristics

Reset button :
Signals add-on block tripping and must be acknowledged before switching on the installation.

Test button for differential operating :
Allows to check the electrical operating of the MCCB / Add-on block association.

Mechanical test button :
Allows to check the mechanical operating of the MCCB / Add-on block association.

LED signaling default current level in the installation:
25% (orange) and 50% (red) $\mid \Delta n$; green light to signal correct operating.
Remote tripping and advanced warning $(50 \% \mid \Delta n)$ signaling thanks to these contacts:

Add-on block operating

$\underset{\infty}{\frac{7}{4}}$	A (l $\\|$ n)						
		0.03	0.1	0.3	1	3	6
	Inst.	OK	OK	OK	OK	OK	OK
	0.06	no	OK	OK	OK	OK	OK
	0.15	no	OK	OK	OK	OK	OK
	0.3	no	OK	OK	OK	OK	OK
	0.5	no	OK	OK	OK	OK	OK
	1	no	OK	OK	OK	OK	OK

Add-on block mounting

Dimensions

			$\begin{gathered} 220 / 240 \mathrm{~V} \\ \text { AC } \\ \text { (kA) } \end{gathered}$	$\begin{gathered} 380 / 415 \mathrm{~V} \\ \text { AC } \\ \text { (kA) } \end{gathered}$	$\begin{gathered} 660 / 690 \mathrm{~V} \\ \text { AC } \\ \text { (kA) } \end{gathered}$
	HHG	Icu	35	25	-
$\checkmark \wedge$ 元		ICS	27	19	-
	HNG	Icu	35	50	-
		Ics	65	25	-
1	HEG	Icu	85	65	-
		Ics	85	36	-
	HNC	Icu	85	50	7.5
naser		Icu	85	25	7.5
	HEC	Icu	100	70	20
		Icu	100	70	15

Magnetic and thermal settings

Thermal adjustment from 0.63 to $1 \mathrm{x} \ln$

Magnetic adjustment from 6 to $10 \times \ln$ (250A)
from 6 to $13 \times \ln (160$ and 200A)
from 6 to $12 \times \ln (32,63,100$ and 125A)

Electronic trip unit setting (LSI)

MCCB h250 3P LSI

LTD pick-up current		Ir	$x \ln$	0.4	0.5		0.8	0.9		0.95	1
Characteristics			No.	1		2	3		4		5
Standard	LTD	Tr	(s)	11		21	21		5		7.5
				200 \% x Ir					600 \% x Ir		
	STD	Isd	x Ir	2.5		2.5	5		10		10
		tsd	(s)	0.1		0.1	0.1		0.1		0.2
	INST	li	x Ir				ax 13				

MCCB h250 4P LSI

LTD pick-up current		Ir	x In	0.4				0.8	0.9			1
Characteristics			No.	1	2	3	4	5	6	7	8	9
	LTD	Tr	(s)	11 s	21 s	7.5 s	11 s	21 s	7.5 s	11 s	21 s	7.5 s
				200 \% x Ir		600\% x Ir	200 \% x Ir		600\% x lr	200 \% x Ir		600\% x Ir
	STD	Isd	x Ir	2.5	5	10	2.5	5	10	2.5	5	10
			(s)	0.1		0.2	0.1		0.2	0.1		0.2
	INST		x Ir	14 (max $13 \times \ln$)								
	Neutral protection			no			0.5			1		

Current limiting curve at 400 V (Let-through peak current)
MCCB h250

Dimensions
MCCBs

	A (mm)
3 P	105
4 P	140

Accessories
Terminal covers for extended straight connections

	A (mm)
3P	105
4 P	140

Terminal cover for rear connections (LSI only)

	A (mm)
3P	105
4 P	140

Connection
Extended straight and spreader connections

Connection with end lugs

Connection by collar

Terminals for copper conductors HYC003H, HYC004H

\square	$\min .35 \mathrm{~mm}^{2}$	$\max .120 \mathrm{~mm}^{2}$
\square	$\min .35 \mathrm{~mm}^{2}$	$\max .120 \mathrm{~mm}^{2}$
$6 . \square$	19 Nm	

Rear connections (LSI only)

Accessories
Direct rotary handle

Extended rotary handle

Motor operator

Auxiliaries
Auxiliaries for MCCBs and trip-free switches

Mounting combination for auxiliaries and releases

MCCBs

		$220 / 240 \mathrm{~V}$ AC (kA)	$380 / 415 \mathrm{~V}$ AC (kA)	$660 / 690 \mathrm{~V}$ AC (kA)
h400/h630 HND	Icu	85	50	20
	Ics	85	50	15
h630 HED	Icu	100	70	20
	Ics	85	50	15
h630 HCD	Icm	-	9	-
	Icw	-	5 kA-0.3 s	-

Settings

Magnetic and thermal settings

Thermal adjustment from 0.63 to $1 \times \mathrm{ln}$
Magnetic adjustment from 6 to $12 \times \ln$

Electronic trip unit setting (LSI)

L - Long delay - protection against overloads: Ir and tr settings

S - Short delay - protection against short circuits: Isd and tsd settings

I - Instantaneous - max. instantaneous threshold (< 10 ms) in case of short circuit: 2.5 to $10 \times \operatorname{lr}(250-400 \mathrm{~A})$ and 2.5 to $8 \times \operatorname{lr}(630 \mathrm{~A})$.

Neutral settings:
(1) Long delay current Ir setting
(2) Other curve characteristics setting (tr, Isd, tsd)
(3) Neutral protection against overloads setting

		LSI		$\ln \mathrm{A}$											
		250 A / 400 A	630 A												
		Long Time Delay	Short Time Delay		Instli (x\|r)	Long Time Delay		Short Time Delay		Inst					
		Ir (x In)	tr (s)	isd (x\|r)		tsd (s)	Ir (x In)	tr (s)	isd (x\|r)	tsd (s)	li (x\|r)				
		\square	0.4	OK					OK						
			0.5	OK					OK						
			0.63	OK					OK						
			0.8	OK					OK						
			0.85	-					OK						
			0.9	OK					OK						
					0.95	OK					OK				
					1	OK					OK				
					1		11s at 2 xlr	2.5	0.1			11s at 2 xlr	2.5	0.1	
			2		21 s at 2 xlr			(max $13 x$		21s at 2 xlr			(max $10 x$		
		(2)	3			5					5				
			4		5 s at 6 xlr	10				5 s at 6 xlr	8				
			5		10 s at 6 xlr		0.2			10 s at 6 xlr		0.2			
			6		19 s at 6 xlr					16 s at 6 xlr					
			7		29 s at 6 xir					-		-	-		
		(3) \square Neutral protection	$\begin{aligned} & \hline 0 \% \\ & 50 \% \\ & 100 \% \end{aligned}$												

(*) Characteristic 1 : use for generators protection.
Characteristic 2 to 4 - standard protection : options allow coordination optimisation with other products.
Characteristic 5 to 7 - motor protection: use positions according to motor starting characteristics.

MCCBs, trip-free switches h400 - h630

Tripping curve
MCCB h400 TM (250 and 400A)

Tripping curve

MCCB h630 LSI (250A and 400A)

Electronic trip unit setting (LSI)
MCCB h630 LSI (250A and 400A)

$\mathrm{IR}(\mathrm{A})$										
LTD Pick-up current		IR	xIn	0.4	0.5	0.63	0.8	0.9	0.95	1
Characteristics			No.	1	2	3	4	5	6	7
Standard	LTD	tR	(s)	11	21	21	5	10	19	29
				200\% x I R			600\% x I R			
	STD	Isd	xIR	2.5		5	10			
		tsd	(s)	0.1			0.2			
	INST	li	$x \mathrm{IR}$	14 (max : $13 \times \ln)$						
Optional	N	IN	xIn	0-0.5-1						
		tN	(s)	$\mathrm{tN}=\mathrm{tR}$						

Tripping curve

MCCB h630 LSI (630A electronic)

Electronic trip unit setting (LSI)
MCCB h630 LSI (630A electronic)

MCCB h400 TM (250A and 400A)

MCCB h630 LSI (250A and 400A)

MCCB h630 LSI (630A)

MCCBs, trip-free switches

MCCB h630 LSI (250A and 400A)
MCCB h400 TM

Dimensions
MCCBs

	A (mm)	B (mm)	C (mm)
3 P	140	45	214
4 P	185	45	214

Terminal covers for extended spreader connections

	A (mm)	B (mm)	C (mm)
3P	180	110	97
4P	240	114	98

	A (mm)	B (mm)	C (mm)	D (mm)
3 P	140	85	97	94.5
4 P	185	85	97	94.5

Terminal covers for rear connections and collar terminal

	A (mm)	B (mm)	B^{\prime} (mm)	C (mm)	D (mm)
3 P	140	3	4.5	97	93
4P	185	3	4.5	97	93

Connection for aluminium / copper conductors (h400 TM, h630 LSI)

HYD005 (3P) - HYD006H (4P)

HYD007 (3P) - HYD008H (4P)

Extended straight and spreader connections

Rear connections

Connection with end lugs

Accessories

Direct rotary handle

Extended rotary handle

Motor operator

		HXD040H	HXD042H
Operating voltage		24-48V DC	100-240V AC
Operating current/starting current peak value (A)	24V DC	$\begin{array}{\|l} \hline-/ 9.2(\mathrm{ON}) \\ 4.3 / 9.8 \text { (OFF, } \\ \text { RESET) } \end{array}$	-
	48 V DC	$\begin{aligned} & \hline-/ 3,8(\mathrm{ON}) \\ & 2.0 / 5.2(\mathrm{OFF}, \\ & \text { RESET) } \end{aligned}$	-
	100-110V AC	-	$\begin{aligned} & \hline-/ 1.9(\mathrm{ON}) \\ & 1.3 / 3.8 \text { (OFF, } \\ & \text { RESET) } \end{aligned}$
	200-240V AC	-	$\begin{aligned} & -/ 3.3(\mathrm{ON}) \\ & 0.9 / 3.8 \text { (OFF, } \\ & \text { RESET) } \end{aligned}$
Operating time (s)	(ON)	0.1 s	
	(OFF)	1.5 s	
	(RESET)	1.5 s	
Power supply required		300VA min.	
Dielectric properties (1 min)		1000 V AC	1500 V AC

MCCBs, trip-free switches

Auxiliaries

Auxiliaries for MCCBs and free tripping switches

Mounting combination for auxiliaries and releases

When associated with MCCB, the add-on block provides an earth fault protection and protects against electrical shocks by direct or indirect contacts.

The add-on blocks are protected against nuisance tripping caused by transient voltages. It's able to detect sinusoidal alternating currents and residual pulsating direct currents (A type $工$). It also avoids miss tripping (HI type - High Immunity).

Characteristics

Reset button :
Signals add-on block tripping and must be acknowledged before switching on the installation.

Test button for differential functioning :
Allows to check the electrical operating of the MCCB / Add-on block association.

Mechanical test button :
Allows to check the mechanical operating of the MCCB / Add-on block association.

LED signaling default current level in the installation:
25% (orange) and 50% (red) $\mid \Delta n$; green light to signal correct operating.
Remote tripping and advanced warning $(50 \% \mid \Delta n)$ signaling thanks to these contacts:

Add-on block operating

$\frac{7}{4}$	A ($1 \Delta n$)						
		0.03	0.1	0.3	1	3	6
	Inst.	OK	OK	OK	OK	OK	OK
	0.06	no	OK	OK	OK	OK	OK
	0.15	no	OK	OK	OK	OK	OK
	0.3	no	OK	OK	OK	OK	OK
	0.5	no	OK	OK	OK	OK	OK
	1	no	OK	OK	OK	OK	OK

Add-on block

Add-on block mounting

(1)

Association / Compatibility

Dimensions

$250-400 \mathrm{~A}$	$630 \mathrm{~A} \times 0.8$
HBD401H 400 A	HBD631H
	500 A
$(\mathrm{le}: 630 \mathrm{~A} \times 0.8)$	

MCCBs

		$\begin{aligned} & 220 / 240 \mathrm{~V} \\ & \text { AC } \\ & \text { (kA) } \end{aligned}$	$\begin{aligned} & 380 / 415 \mathrm{~V} \\ & \text { AC } \\ & \text { (kA) } \end{aligned}$	$\begin{aligned} & 660 / 690 \mathrm{~V} \\ & \text { AC } \\ & \text { (kA) } \end{aligned}$
HNE	Icu	85 (630-800A), 75 (1000A)	50	20
	Ics	85 (630-800A), 75 (1000A)	50	20
HEE	Icu	100	70	20
	ICS	100 (630-800A), 75 (1000A)	50	20
HCE	Icm	-	17	-
	Icw	-	$10 \mathrm{kA}-0.3 \mathrm{~s}$	-

Electronic trip unit settings (LSI)

(3)

L - Long delay - protection against overloads: Ir and tr settings
S - Short delay - protection against short circuits: Isd and tsd settings

I - Instantaneous - max. instantaneous threshold (<10 ms) in case of short circuit: 2,5 to $10 \times \operatorname{lr}(630-800 A)$ and 2,5 to $8 \times \operatorname{Ir}$ (1000A).

(*) Characteristic 1 : use for generators protection.
Characteristic 2 to 4 - standard protection : options allow coordination optimisation with other products.
Characteristic 5 to 7 - motor protection: use positions according to motor starting characteristics.

MCCBs, trip-free switches

Tripping curve

MCCB h1000 LSI (630-800A)

Electronic trip unit setting (LSI)
MCCBs 630-800A electronic

IR (A)										
LTD Pick-up current		IR	$x \mathrm{ln}$	0.4	0.5	0.63	0.8	0.9	0.95	1
Characteristics			No.	1	2	3	4	5	6	7
Standard	LTD	tR	(s)	11	21	21	5	10	19	29
				200\% x IR			600\% x I R			
	STD	Isd	xIR	2.5		5	10			
		tsd	(s)	0.1				0.2		
	INST	li	xIR	14 (max : $12 \times \mathrm{ln}$)						
Optional	NP	IN	$x \mathrm{IR}$	0.5 or 1 or NON (IN $\times 105 \%$ NT, IN $\times 120 \%$ T)						
		tN	(s)	$\mathrm{IN}=\mathrm{tR}$						

Tripping curve
MCCB h1000 LSI (1000A)

Electronic trip unit setting (LSI)

MCCBs 1000A electronic

IR (A)													
LTD Pick-up current		IR	$\begin{gathered} \hline x \ln \\ \hline \text { No. } \end{gathered}$	$\begin{array}{\|l\|} \hline 0.4 \\ \hline 1 \\ \hline \end{array}$	$\begin{aligned} & 0.5 \\ & \hline 2 \end{aligned}$	0.63	0.8		0.9		0.95 1		
Characteristics						3		4		5		6	
Standard	LTD	tR	(s)	11	21	21		5		10		16	
				200\% x I R				$600 \% \times \operatorname{lR}$					
	STD	Isd	xIR	2.5		5		8					
		tsd	(s)	0.1						0.2			
	INST	li	xIR	14 (max : $10 \times \ln$)									
Optional	NP	IN	$x \mathrm{ln}$	0.8									
		tN	(s)	$\mathrm{IN}=\mathrm{tR}$									

MCCB h1000

Current limiting curve at 400V (Let-through peak current)
MCCB h1000

Dimensions
MCCBs

	A (mm)	B (mm)
3 P	210	180
4 P	280	250

Terminal covers for extended straight connections

MCCBs, trip-free switches

Terminal covers for rear connections

Connection

Extended straight connections

Direct cable connection on terminal
Copper with conductor max. width: 50 mm

Connection with end lugs

(2)

Rear connections

Connection for aluminium / copper conductors (h1000)
HYE007 (3P) - HYEOO8H (4P)

Accessories

Direct rotary handle

Extended rotary handle

Motor operator

		HXEO4OH	HXE042H
Operating voltage		24-48V DC	100-240V AC
Operating current/starting current peak value (A)	24V DC	$\begin{aligned} & \hline-/ 12(\mathrm{ON}) \\ & 6 / 11.5 \text { (OFF, } \\ & \text { RESET) } \end{aligned}$	-
	48 V DC	$\begin{aligned} & \hline-/ 7(\mathrm{ON}) \\ & 3.2 / 6.5(\mathrm{OFF}, \\ & \text { RESET) } \end{aligned}$	-
	100-110V AC	-	$\begin{aligned} & -/ 2.2(\mathrm{ON}) \\ & 1.7 / 3.5(\mathrm{OFF}, \\ & \text { RESET) } \end{aligned}$
	200-240V AC	-	$\begin{aligned} & -/ 2.2(\mathrm{ON}) \\ & 1.3 / 3.5(\mathrm{OFF}, \\ & \text { RESET) } \end{aligned}$
Operating time (s)	(ON)	0.15	
	(OFF)	1.5 s	
	(RESET)	1.5 s	
Power supply required		300VA min.	
Dielectric properties (1 min)		1000 V AC	1500 V AC

Auxiliaries
Auxiliaries for MCCBs and free tripping switches

Mounting combination for auxiliaries and releases

MCCBs

	$220 / 240 \mathrm{~V}$ AC (kA)	$380 / 415 \mathrm{~V}$ AC (kA)	$660 / 690 \mathrm{~V}$ AC (kA)	
	Icu	100	50	25
	Ics	75	50	25
HEF	Icu	100	70	45
	Ics	75	50	34
HCF	Icm		45 kA	
	Icw		20 kA- 0.3 s	

L - Long delay - protection against overloads: Ir and tr settings
S - Short delay - protection against short circuits: Isd and tsd settings
I - Instantaneous - max. instantaneous threshold (< 10 ms) in case of short cir-

LSI		In A				
		1250-1600 A				
		Long Time Delay		Short Time Delay		Inst
		Ir (x In)	tr (s)	isd (xlr)	tsd (s)	li (x\|r)
$\operatorname{Ir}(x \ln)$	0.4	OK				
	0.5	OK				
	0.63	OK				
	0.8	OK				
	0.9	OK				
	0.95	OK				
	1	OK				
— (2) Characteristics*	1		11s at $2 \times 1 r$	2.5	0.1	$\begin{aligned} & 14(\max 12 x \\ & \mathrm{In}) \end{aligned}$
	2		21s at $2 \times 1 r$			
	3			5		
	4		$5 \text { s at } 6 \text { xlr }$	10		
	5		$10 \mathrm{~s} \text { at } 6 \mathrm{xir}$		0.2	
	6		19 s at 6 xlr			
	7		29 s at 6 xlr			
(3) Neutral protection	$\begin{aligned} & \hline 0 \% \\ & 50 \% \\ & 100 \% \end{aligned}$					

cuit: 2,5 to $10 \times \mathrm{lr}$.

	(D) $\operatorname{Ir}(\mathrm{A})$	Im LI	N
LSI	$0.4-1$	$2.5-$	0%
	In	10 Ir	50% 100%

Electronic trip unit settings (LSI)

(*) Characteristic 1 : use for generators protection.
Characteristic 2 to 4 - standard protection : options allow coordination optimisation with other products.
Characteristic 5 to 7 - motor protection: use positions according to motor starting characteristics.

Electronic trip unit setting (LSI)
MCCBs 1250A and 1600A electronic

$\mathrm{IR}(\mathrm{A})$										
LTD Pick-up current		IR	$x \ln$	0.4	0.5	0.63	0.8	0.9	0.95	1
Characteristics			No.	1	2	3	4	5	6	7
Standard	LTD	tR	(S)	11	21	21	5	10	19	29
				200\% x I R			600\% x I R			
	STD	Isd	xIR	2.5		5	10			
		tsd	(s)	0.1				0.2		
	INST	li	xIR	14 (max : $12 \times \mathrm{ln}$)						
Optional	NP	IN	xIR	0,5 or 1 or NON (IN x 105\% NT, IN x 120\% T)						
		tN	(s)	$\mathrm{IN}=\mathrm{tR}$						

Thermal constraint curve at 400V (Let-through energy)

MCCB h1600

Current limiting curve at 400V (Let-through peak current)

MCCB h1600

Dimensions

MCCBs

	A (mm)	B (mm)
3 P	210	185
4 P	280	255

Connection
Connection with end lugs

Accessories

Direct rotary handle

Motor operator

		HXFO4OH	HXFO42H
Operating voltage		24 V DC	$200-230 \mathrm{~V}$ AC
Operating current / starting current peak value (A)	24 V DC	$-/ 4.5(\mathrm{ON})$ $4.0 / 12.0$ (OFF, RESET)	-
	$200-230 \mathrm{~V} \mathrm{AC}$	-	$-/ 1.2(\mathrm{ON})$ $1.0 / 3.2$ (OFF, RESET)
	(ON)	$0,06 \mathrm{~s}$	
	(OFF)	3 s	
	(RESET)	3 s	
Power supply required	$300 \mathrm{VA} \mathrm{min}$.		
Dielectric properties (1 min)	500 V AC	1500 V AC	

Auxiliaries

Auxiliaries for MCCBs and free tripping switches

Mounting combination for auxiliaries and releases

Manual Changeover Switches 63A to 1600A

Advantages for you:

- Double break per pole facilitaling suitability for isolation as per IEC 60947-3
- Safe isolation at 0 position for maintenance
- Compact dimension to save panel space
- Flexibility to mount accessories on site
- Voltage free stable position contact (I, 0, II)
- Line load reversibility
- Silver plated contact for long life

Technical data:

- Complies with IEC 60947-3
- Rating: 63A-1600A
- Suitable for AC23
- Lockable position: 0

Expert tips

01
Quick switching operation by spring action with sweeping silver contacts

02
Compact dimension with back to back terminals

03

3 stable position changeover with padlocking at zero position for maintainance on direct \& extended handle

04
Site mountable wide range of accessories based on application needs

Manual changeover switches,
63 to 1600A
For safety breaking.

- 4P,

Allows manual switch, changeover switch or on load power circuit permutation.

- lockable on position: I, O or II
- Mounting on perforated plate or crossbars.
- Comply with EN 60 947-3.
- Connection with terminals.

HZC204I

Technical characteristics

	H1403I	H1405	HI451I	HI452I	H1453I	H1454I	HI455I	H1456I	HI458I	HI460I	HI461I	HI462I	H1464I
In	63 A	100 A	125 A	160 A	200A	250 A	315A	400 A	630 A	800 A	1000A	1250 A	1600 A
insulation voltage Ui (V)	750	750	800	800	800	800	1000	800	1000	1000	1000	1000	1000
impulse withstand voltage Uimp (kV)	6	6	8	8	8	12	12	8	12	12	12	12	12
le AC 22A / 22B, 400 V (A)	63	100	125	160	200	250	315	400	630	800	1000	1250	1600
le AC 23A / 23B, 400 V (A)	63	100	125	160	200	250	315	250	500	800	1000	1250	1600
operational power (kW) AC 23A à 400 V	30	30	63	80	80	132	132	220	280	450	710	710	710
short circuit current with gG DIN fuses (kA)	80	80	100	100	50	50	50	18	70	50	100	100	100
associated fuse rated (A)	63	100	125	160	200	250	315	400	630	800	1000	1250	2×800
rated short circuit making capacity Icm (kA peak)	15	15	12	12	12	17	22	15,3	30	48	75	75	86
rated short time withstand current Icw (kA/1s)	5	5	7	7	7	9	9	9	13	26	35	50	50
mechanical endurance (cycles)	10000	10000	10000	10000	10000	10000	10000	8000	5000	3000	10000	4000	4000
connection for lugs (mm^{2})	16	25	50	95	120	150	240	240	2×300	2×300	4×185	4×185	6×185

Dimensions diagram (in mm)

63A-100A

125A-630A

800A-1600A

Dimensions (in mm)

	Rating	A	B	C	D	E	F	G	H	J	K	
HI451I	125A	251	135	218	208	148	186	101	235	20	36	-
HI452I	160 A	251	135	218	208	148	186	101	235	20	36	-
HI453I	200A	251	160	218	208	148	246	116	280	20	50	-
HI454I	250A	312	160	218	208	148	246	116	280	25	50	-
HI455I	315A	312	170	218	208	148	246	116	280	35	50	-
HI456I	400A	312	170	218	208	148	246	116	280	35	50	-
HI458I	630A	379	260	295	285	225	306	176	400	45	65	-
HI460I	800 A	466	320	375	390	298	336	250	459	50	80	609
HI461I	1000A	466	321	375	425	298	336	250	459	50	80	-
HI462I	1250A	466	330	375	425	298	336	250	459	60	80	741
HI464I	1600A	598	360	375	425	298	467	250	461	90	120	741

Fixing of door interlock mechanism
Rating: 63A-100A
Change over switch

Mounting
Rating: 125A-630A

Manual changeover switch enclosures

Enclosure for Manual Changeover Switch

\# Note: Enclosures are supplied, assembled together with Manual Changeover Switch
Diagram:

Dimensions (in mm)

	Rating	A	B	C	K'OUT
VYE63M	$63 A$	250	202	205	32
VYE100M	$100 A$	250	202	205	32
VYE125M	$125 A$	355	350	275	32
VYE160M	$160 A$	355	350	275	32
VYE250M	$250 A$	420	410	275	50
VYE400M	$400 A$	420	410	275	50
VYE630M	$630 A$	520	580	353	50
VYE800M	$800 A$	610	680	538	50
VYE1000M	$1000 A$	800	680	538	50
VYE1250M	$1250 A$	800	680	538	50
VYE1600M	$1600 A$	800	680	538	50

The changeover specialist.

Wide range of changeovers for continuity of power from 0.5 A to 1600 A .

Automatic Transfer Switches 125A to 1600A

Advantages for you:

- Manual override function for emergency operations
- Flexibility to have line load reversibility
- Voltage free stable position contact (I, 0, II)
- Position indicator
- LED indicator of power ON and manual override
- Padlocking facility at zero position in manual mode for maintainance

[^2]Technical data:

- Complies with IEC 60947-6-A
- Rating: 125A - 1600A
- Suitable for AC33B
- Lockable on position: O

Expert tips

05
Power ON and Manual override indicator

06

Plug-in terminals

Automatic Transfer Switches Controller

Advantages for you:

- Easy parameter display using remote interface
- Controller with On / Off load testing facility
- Controller with Genset Start / Stop option
- Plugin terminals for convenient wiring
- LED indication of source and changeover status

Technical data:

- Voltage monitoring
- Frequency monitoring
- Phase sequence monitoring
- No auxiliary supply required
- Security access codes for programming and testing

Expert tips

01

Controller with LCD for parameter display for easy monitoring and flexibility to modify parameters

05

Over / Under voltage, Over / Under frequency
Phase sequence monitoring and adjustable delay timers

02
Genset Start / Stop function enables convenient control of Genset during power failure

03

RJ45 port allows easy communication with Remote Interface

06
ON-OFF testing facility for the system

Automatic transfer switches

Automatic changeover switches,

125 to 1600A
Allows automatic switch,changeover switch or on load power circuit permutation.
for safety breaking.

- 4P,
- lockable on position: O
- Mounting on perforated plate or crossbars.
- Comply with NF EN 60 947-3.

Connection with terminals.

	Description	Characteristics	In/A	Cat. Ref.
	Automatic changeover	4P	125A	HIB412I
	switches	Positions: O		
			160A	HIB416I
			250A	HIB425I
			400A	HIB440I
HIB4121				
			630A	HIB463I
			800A	HIB480I
			1000A	HIB490I
			1250A	HIB491I
			1600A	HIB4921

HZI8111

Automatic transfer relays* controller		HZ1811I
Double power supply for		
Motorized Changeover		HZI812I
Terminal shroud	for switches 125 to 160A	HZC2021
top and bottom	for switches 200 to 400A	HZC204I
2 pieces / packaging	for switches 400 to 630A	HZC206I
Terminal covers	for switches 125 to 160A	HZI201I
	for switches 250 to 400A	HZI202I
	for switches 630A	HZI203I
	for switches 800 to 1250A	HZI204I
	for switches 1600A	HZI205I
Remotes	changeover status display	HZ1910I
	changeover status and control display	HZ1911I

[^3]

Power Section: Changeover switch assembly with inherent mechanical interlock.
(2)

Front: Switch number 1 terminals (3 or 4 pole).Back: Switch number 2 terminals (3 or 4 pole).Switch position indication window : - I (On) - O (Off) - II (On).

Top cover.Back-plate mounting fixing lugs.Auxiliary power supply: 230 VAC (208-277 VAC $\pm 20 \% \Rightarrow 166-332 \mathrm{Vac})$.
Motorized Control Unit.
(9)

Motor housing.(if control voltage input of the produc is within specified range).
(11) Auto / Manual mode selector switch.
(12) Emergency manual operation "Direct Handle".
(13) Emergency manual operation shaft location (Accessible only in manual mode).
(14) Red LED Indication: Product Unavailable / Manual Mode / Fault Condition.
(15) Padlocking facility (Up to 3 padlocks of dia. 4-8 mm).
(16) Output contacts $\times 4$ (Position indication I-O - II and product availability outputs).
(17) Handle fixing clip.
(18) Input contacts $\times 5$:

Position order I-O-II,
Remote control enable
Override controls and force to Off position
(19) Sliders for Terminal Shields
(20) Fixing holes for terminal Shields

Automatic transfer switches Installation

Frame dimensions (125A to 630A)

(4) Terminal cover.
(1) Padlocking Facility: Locking bracket for up to 3 padlocks of dia. 4-8 mm.
(5) Emergency manual operation (direct handle).
(2) Emergency manual operation: Maximum operating radius
(6) Flush mounting cutout dimensions for front door. with an operating angle of $2 \times 90^{\circ}$.
(3) Connection and disconnection area.

To consider the space required for manual operation and wiring.
(When using the emergency handle)

Rating (A)	Overall dimensions			Terminal Shrouds	body			Switch mounting M	Connection										
	A	C	F	AC	H	J	J1		T	U	V	W	X	Y	Z1	Z2	AA	BA	CA
125	334	244	317	233	151	184	34	150	36	20	25	9	22	3,5	38	134	135	115	10
160	334	244	317	233	151	184	34	150	36	20	25	9	22	3,5	38	134	135	115	10
200	334	244	317	233	151	184	34	150	36	20	25	9	22	3,5	38	134	135	115	10
250	395	244	378	288	152	245	35	210	50	25	30	11	33	3,5	39,5	133,5	160	130	15
315	395	244	378	288	152	245	35	210	50	25	30	11	33	3,5	39,5	133,5	160	130	15
400	395	244	378	288	152	245	35	210	50	35	35	11	33	3,5	39,5	133,5	170	140	15
500	454	321	437	402	221	304	34	270	65	45	50	13	37,5	5	53	190	260	220	20
630	454	321	437	402	221	304	34	270	65	45	50	13	37,5	5	53	190	260	220	20

Automatic transfer switches

Frame dimensions (800A to 1600A)

To consider the space required for manual operation and wiring.
(When using the emergency handle)

Rating (A)	Overall dimensions B	Terminal Screens AC	body		Switch mounting M	Connection						
			F	J		T	U	V	X	Y	Z1	AA
800	370	461	584	387	335	80	50	60,5	47,5	7	66,5	321
1000	370	461	584	387	335	80	50	60,5	47,5	7	66,5	321
1250	370	461	584	387	335	80	60	65	47,5	7	66,5	330
1600	380	531	716	519	467	120	90	44	53	8	67,5	288

Dimensions in mm

Automatic transfer switches Installation

Mounting orientation

Terminal shrouds available from 125 A to 630 A

- Upstream, downstream, front or rear mounting.
- When fitted with bridging bars only the front terminal shrouds are to be installed.

Terminal screens available from 125 A to 1600 A

Power supply terminal and control / command terminals

Remove the top cover to access and connect the terminal - Replace the cover before putting in service.

Ensure that the product is in manual mode

Use cables witn 1,5 to $2,5 \mathrm{~mm}^{2}$ section.
Screw M3-Tightening torque: mini: $0,5 \mathrm{Nm}$ - maxi: $0,6 \mathrm{Nm}$.

Do not handle any control or power cables connected to the product when voltage may be present.

Control enable:
312
Override to OFF : $\quad 313$
Sw to Pos III/P: $\quad 314$
Sw to Pos II/P: $\quad 315$
Sw to Pos O I/P: $\quad 316$
Common: 317

Prod Avail Common: 63 A
Prod Avail O/P: 64 A
Pos II Aux Contact: 24
Pos I Aux Contact: 14
Pos O Aux Contact: 04
Common: 13

Automatic transfer switches Connections

Denomination	Terminal	Description	Characteristics	Recommended Cable Section
Signalisation Outputs	13	Common 1-O-II for Aux Contacts.	Dry Contacts2A AC1/250V	$1,5 \mathrm{~mm}^{2}$
	04	Aux Contact Position O-Normally Open Contact.		
	14	Aux Contact position I: Normally Open Contact.		
	24	Aux Contact position II: Normally Open Contact.		
	63A	Product Available : Normally Open Contact. Closed when the product is in Auto mode and motorisation is operational. (No Fault powered and ready to changeover)		
	64 A			
Power supply Input	301	Power supply-L	$\begin{aligned} & 208-277 \text { VAC } \\ & \pm 20 \%: 50 / 60 \mathrm{~Hz} \end{aligned}$	$1,5 \mathrm{~mm}^{2}$
	302	Power supply-N		
Control Inputs	312	Remote Control Mode Enable when closed with 317.	Do not connect terminals 312 to 317 to any power supply. These order inputs are powered through terminal 317 and external dry contacts ONLY Max cable length 100 m	1,5 mm²
	313	Position O order if closed with 317 (Priority order input forcing the product to remote control mode and O position).		
	314	Position II order if closed with 317.		
	315	Position I order if closed with 317.		
	316	Position O order if closed with 317.		
	317	Common control terminal for 312-316 ATS (Specific Voltage Supply)		

The product includes 3 safe and distinct operating modes through a selector switch located on the front of the product.
The modes of operation are as follows:

- Auto Mode : Remotely operated transfer switching,
- Manual Mode : Local emergency manual operation,
- Locked Mode : Secure locked pa locking facility.
AUT
mode

Depending on the state of the product the ATS automation may change the switch position as soon as the mode selector is switched to AUT. This is a normal operation.

Automatic transfer switches Trouble shooting guide

It is recommended to verify the tightening torque of all connections and to operate the product in a full operating cycle (I-O-II-O-I : Auto or Manuel) at least once a year.

Note: Maintenance should be planned carefully and carried out by qualifed and authorised personnel. Consideration of the critical level and application where the product is installed should form an essential and integral part of the maintenance plan. Good engineering practice is imperative whilst all necessary precautions must be taken to ensure that the intervention (whether directly or indirectly) remains safe in all aspects.

Trouble shooting guide

The product does not operate electrically.	- Verify the power supply on terminals $301-302: 208-277$ VAC $\pm 20 \%$. - Verify that the front selector switch is in position (AUT). - Verify that contacts 313 and 317 are open. - Verify that the power LED (Green) is On whilst the fault LED (RED) is off. - Verify that the product is available with contacts 63 A and 64 A closed.		
It is not possible to manually operate the switch.	- Verify that the front selector switch position is on the Manual position. - Make sure that the product is not padlocke. - Verify the rotation direction of the handle. - Apply a sufficient progressive action in the direction as indicated on the handle.		
Electrical operation does not correspond to external order	I, O, II.		- Verify the selected control logic wiring (impulse or contactor).
:---			
- Verify the connector connections.			

Product introduction

Mounting

$>$ DIN rail mounting

Dimensions

Characteristics

$>$ IP
IP2 and class II on front face
$>$ Operation

- Temperature : $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Humidity : $\begin{array}{r}80 \% \text { at } 55^{\circ} \mathrm{C} \\ 95 \% \text { at } 40^{\circ} \mathrm{C}\end{array}$

$>$ Consumption

7,5 VA max
$>$ Measurement category
Cat III

Operational modes

VISUALISATION		
Measuredvalues \& parametered timers display. Alway- saccessible without code.		Test sequences. Password access (code 4000).

PROGRAMMING
Parameters configuration. Password access (code
Parameters configuration. Password access (code
1000 from factory).
1000 from factory).
The manual mode
input if required.

PHASES ROTATION CONTROL
Function available only on source 1 incase of 3 NBL,
4NBL and 41NBL network. as available.

Programming

This mode allows product parameters configuration
Always accessible 0 /in mode (when programmed
Always accessible in AUT mode, changeover switch
on priority source, priority source being available
N ot accessible when "test off load", "test on load"
functions are active or during automatic sequence.

Λ	Parameters requiring program - type of network - nominal voltage - nominal frequency - control logic. - number of auxiliary contact

| $>$ Navigation dans les menus |
| :--- | :--- |
| • Parameters access: Press "up", "down", "left" \& "right" push buttons |
| - Parameter modification: "left" \& "right" push button to access the parameter to modify Press "up" and |
| "down" push buttons to modify the parameter and "validate" |
| - Return to main menu: press "ESC" push button Value is only modified after validation |

$>$ Programming access
- Step 1 : press and hold for 5 s "validation"
push button
• Step 2 : enter code (factory code $=1000$) using
navigation push buttons
- Step 3 : press validation

> Programming exit

(目) • Press and hold for 5 s "validation" push button

Programming

PROGRAMMING MENU ARCHITECTURE

Availability of output functions depending on control logic selection (impulse, breaker or contactor logic)

Programming

PARAMEIERS CHARACTERISTICS
$>$ Menu setup: 58

LCD	Denomination	Definition	Setting range	Default values
0	Type of network*	Number of active conductors of controlled network (refer to annexes)	1BL, 2BL, 2NBL, 3NBL, 4NBL, 41 NBL	4NBL
	Network nominal voltage	Phase-Neutral voltage for 1BL \& 41NBL Phase-Phase voltage for others	$\begin{aligned} & \text { from } 100 \mathrm{~V} \text { to } \\ & 400 \mathrm{~V} \end{aligned}$	400V
	Network nominal frequency	Network nominal frequency	50 Hz or 60 Hz	50 Hz
	Genset start signal state	Normally opened or closed	NO or NC	NO
	Network priority selection	Keypad selection (1 or 2) Also possible via external contact using option 0 : no network has priority	$\begin{aligned} & 1,0 \text { or } 2 \\ & \text { (} 1 \text { or } 2 \text {) } \end{aligned}$	1(团)
	Manual Retransfer	Activation of the feature	Yes or No	No
	Type of control logic selection	Impulse, contactor or breaker.	Imp, con, brE	Imp
		It might be necessary for some breakers not to set up OMR and OMF timers to 0 (2 sec . for exemple).		
	Number of auxiliary contact	Depending on the number if available auxiliary contacts (switch, contactor, breaker)	0, 2, 3	2
ai	Parameter 1, return in position 0	Allows to go to position 0 in case of voltage or frequency outage (out if the defined U, f range)	Yes ou No	No
	Parameter 2 return in position 0	Allows to go to position 0 in case of voltage or frequency outage (out if the defined U, f range)	Yes ou No	No
$\begin{array}{ll} \text { Crs } \\ \text { Cran } \\ \hline \end{array}$	Number of 1 2 permutation counter Reset	Allows source $1=$ source 2 automatic sequences counter reset	Yes ou No	No
${ }^{[P A}$	Programming code modification	Possible to change the programming code	from 0000 to 9999	1000

Refer to annexes

Programming

Threshold detection starts from the loss of source
or source return sequence.

LCD	Denomination/Definition	Setting range	Default values
	Network 1 over voltage threshold	From 102 to 120\%	115\%
$a^{\text {ath }}$	Network \square over voltage threshold hysteresis	$\begin{aligned} & \begin{array}{l} \text { From } 101 \text { to } 119 \% \\ (<\mathrm{oU}) \end{array} \end{aligned}$	110\%
ull	Network 1 under voltage threshold	From 80 to 98\%	85\%
U	Network 1 under voltage threshold hysteresis	$\begin{aligned} & \begin{array}{l} \text { From } 81 \text { to } 99 \% \\ (>\mathrm{uO}) \end{array} \end{aligned}$	95\%
ait	Network 2 over voltage threshold	From 102 to 120\%	115\%
$\begin{aligned} & \text { adh } \\ & \text { agvou日m } \end{aligned}$	Network 2 over voltage threshold hysteresis	$\begin{aligned} & \begin{array}{l} \text { From } 101 \text { to } 119 \% \\ (<\mathrm{OU}) \end{array} \end{aligned}$	110\%
x_{0}^{40}	Network 2 under voltage threshold	From 80 to 98\%	85\%
winnan	Network 2] under voltage threshold hysteresis	$\begin{aligned} & \begin{array}{l} \text { From } 81 \text { to } 99 \% \\ (>\mathrm{UU}) \end{array} \end{aligned}$	95\%

Programming

LCD	Dénomination	Description	Plage de réglage	Valeurs par défaut
(19ters	Main Failure Timer	Delays priority network failure detection	$\begin{aligned} & \text { From } 0 \\ & \text { to } 60 \mathrm{~s} \end{aligned}$	5 s
	Delay on transfer Timer	Standby network stability validation before transfer	$\begin{aligned} & \text { From } 0 \\ & \text { to } 60 \mathrm{~s} \end{aligned}$	5 s
	O Main failure Timer	Rest in O position when transferring from main network to secondary network	$\begin{aligned} & \text { From } 0 \\ & \text { to } 20 \mathrm{~s} \end{aligned}$	0 s
	Main return Timer	Main network stability validation before re-transfer	$\begin{aligned} & \text { From } 0 \\ & \text { to } 30 \mathrm{~min} \end{aligned}$	2 min
$\begin{array}{lll} 0 n_{r} & 0 \end{array}$	O main return Timer	Rest in O position when re-transferring from standby network to main network	$\begin{aligned} & \text { From } 0 \\ & \text { to } 20 \mathrm{~s} \end{aligned}$	0 s
	Cool down Timer	Allows generator cooling down period after load's retransfer from standby source (generator) to Main source	$\begin{array}{\|l} \hline \begin{array}{l} \text { From } 0 \\ \text { to } 10 \mathrm{~min} \end{array} \end{array}$	4 min

Programming

Threshold detection starts from the loss of source
or source return sequence.

LCD	Denomination/Definition	Setting range	Default values
b^{6}	Network 1 over voltage threshold	From 101 to 120\%	105\%
$a^{9 f m}$	Network 1 over voltage threshold hysteresis	$\begin{aligned} & \text { From 100,5 to } \\ & 119,5 \%(<~ o F) \end{aligned}$	103\%
0	Network 1 under voltage threshold	From 80 to 99\%	85\%
$x_{0}^{5 m}$	Network 1 under voltage threshold hysteresis	$\begin{aligned} & \begin{array}{l} \text { From } 80,5 \text { to } \\ 99,5 \% \\ (>\text { uF) } \end{array} \\ & \hline \end{aligned}$	97\%
	Network 2] over voltage threshold	From 101 to 120\%	105\%
$a^{a h n}=$	Network [2 over voltage threshold hysteresis	$\begin{aligned} & \text { From 100,5 to } \\ & 119,5 \% \text { (< oF) } \end{aligned}$	103\%
x^{6}	Network [2] under voltage threshold	From 80 to 99\%	95\%
占h	Network 2 under voltage threshold hysteresis	$\begin{aligned} & \text { From } 80,5 \text { to } \\ & 99,5 \% \\ & (>\text { uF }) \end{aligned}$	97\%

Programming
$>$ Inputs/Outputs Menu $\begin{aligned} & 1-0 \\ & 18 \\ & 0.0\end{aligned}$

Input state can be configured: NC or NO.

LCD	Denomination/Definition	Setting range	Default values
$\ln 1$	Input 1	Ft1, Ft2, Ft3, Ft4, Pri, Mtf, / S2A, MAN, CtS, tol, tfl, EJP	1
$\sqrt{\ln 1}$	Input 1 state	NO, NC, /	No
x^{102}	Input 2	Ft1, Ft2, Ft3, Ft4, Pri, Mtf, / S2A, MAN, CtS, tol, tfl, EJP	1
	Input 2 state	NO, NC, /	No
$x_{0}^{n 01}$	output 1	S1A, S2A, LS, /	/
0	output 2	S1A, S2A, LS, /	1

Controller

Programming

Inputs

Variable	Description
Ft1	Fault input 1. The fault led is blinking as soon as the input is active and Ft 1 is displayed on LCD. Reset when the input is de-activated
Ft2	Fault input 2. The fault led is blinking as soon as the input is active and Ft2 is displayed on LCD. Reset when the input is de-activated
Ft3	Fault input 3. The fault led is blinking as soon as the input is active and Ft3 is displayed on LCD. The transfer switch is immediately driven in 0 position (only in contactor mode). Keypad action (Validation) necessary to Reset the fault
Ft4	Fault input 4. The fault led is blinking as soon as the input is active and Ft4 is displayed on LCD. The transfer switch is immediately driven in 0 position (only in contactor mode). Keypad action (Validation) necessary to Reset the fault
Pri ${ }^{(1)}$	Priority network selection. Network 1 has priority when input is not activated. Network 2 has priority if input is active
Mtf	Remote manuel re-transfer. Feature identical to manual retransfer on keypad. Re-transfer from priority network to backup network is allowed from input activation (1s front). The Mtf variable in the setup menu must be selected (Yes) to allow input recognition
S2A	Information source 2 available (Genset) used instead of voltage/frequency measurement (inhibited when S2A is selected)
Man	Information transfer system in manual mode All automatic commands (+ test on load) are inhibited as soon as the input is activated
CtS	Remote transfer control. Possible to initiate transfer from priority source to backup source before DTT ends. If DTT is set to its maximum value (60s), the transfer is initiated as soon as the input is activated (1s front)
tol	Remote test on load. Started from input activation. Re-transfer is blocked until input de-activation
tfl	Remote test off load Started from input activation (remote genset start / stop)
EJP	2 inputs are automatically affected to EJP - input 1 for EJP advice, to start generator - input 2 to transfer on emergency source Retransfer is activated when input 2 dissapears

Operation

PRESENTATION
This mode allows in manual mode (not padlocked) to
start a test off load. In automatic mode, it allows to start
a test, on or off load.

Navigate in operation mode:

- Press "Test" push button to access different features
-国. Press "validation" push button to activate required function

OPERATION MODE ARCHITECTURE

Programming

$>$ Inputs/Outputs Menu | $1-0$ |
| :--- |
| 10 |

Outputs

Variable	Description		
S1A	Source 17 available.		
S2A	Source 2 available. Output activated as soon as source 2 is considered available (similar to front led source 2)		
LS	Load shedding relay. LS timer corresponds to time available to disconnect the shed loads. The relay is activated before permutation on standby network according to LS timer. The relay is de-activated after retransfer on mains network and LS timer countdown		
In case of LS function selection, it is required to configure associated LS timer.			
Output	$\begin{array}{\|l\|} \hline \text { Function } \\ \hline \text { S1A, S2A, LS,/ } \\ \hline \end{array}$	Setting range	Default Value
0		$\begin{aligned} & \text { For LS: } \\ & \text { 0 to } 60 \mathrm{~s}(\leq \mathrm{DTT}) \end{aligned}$	$\begin{aligned} & \text { For LS: } \\ & 3 \mathrm{~s} \end{aligned}$

- Example : LS configuration (output relay Ou1, 3 seconds):

The load shedding can't be used with the priority net-
work (priority source $=$ source 22). In this case, LS
output is not valid. output is not valid.

- Load shedding cycle

Operation

TEST OFF LOAD (ACCESSIBLE IN AUT/ © MODES) Eff tis
It can be activated from:

- operation mode
- programming input (TFL) if selected.

This test is made for applications where emergency source 2 is typically a genset (priority source must be source 1) This test can be activated, in automatic mode, changeover switch in position 1 , source \square available.

$>$ Description

- This mode will start and stop remotely genset operation without load transfer
- Genset is started and stopped
- The test is not possible during an automatic sequence

$>$ Keypad activation

After operation mode access, press mode push button to make the test off load led blinking and validate to start the sequence

TEST ON LOAD (ACCESS IBLE IN AUT MODE) (on viti
It is activated from:

- operation mode
- programming input (TOL) if selected.

> Description

- This test simulates a loss of priority source situation. The sequence generates load transfer from priority source to ceafterbackupsourcestartupoperation (in case of genset). The return sequence always keeps manual re transfer feature activated (from priority
- All timers are count

> Keypad activation

After operation mode access, press mode push button to make test on load led blinking and validate to start a cycle. The test is only possible in automatic mode, the
changeover switch in priority source position, priority source being available.
> Keypad or remote operation

[^4]
Visualisation

PRESENTATION

- This mode allows parameters to be displayed independently from mode b/AUTswitch position (if programmed on input)
- No code required to access parameters visualisation
- Without any action during 5 seconds on the ketwork. In case of changeover switch on 0 position, priority network voltage is displayed.

Navigation in visualisation mode:

- Press "up" and "bottom" push buttons to access required parameter
- Press "left" and "right" push buttons to navigate in the different menus

LOSS OF PRIORTTY SOURCE AUTOMATIC SEQUENCE

This sequence is started as soon as the switch is in >Specific feature: remote transfer control automatic mode and in priority position (position I ource [1):

- transfer switch is in position I
- source 2 is available or unavailable

It is possible to transfer from main source to emergen-
cy source before DTT finishes up and to allow transfer cy source before DTT finishes up and to allow transfer with CTS option if selected on an unput. DT is auto-
matically 2 set up to its maximum value as soon as CTS is selected.
> Available source

The same table can be taken into account after complete power supply loss (the product must be completely discharged to reset $=3$ minutes.)
 New position

Changeover switch initial position	Sources availability	New position
Priority source	Priority source available, emergency source available or unavailable	Priority source
Priority source	Priority source unavailable for MFT time period, emergency source available or unavailable	Emergency source. If emergency source unavailable start emergency source first and wait for DTT timer period before transfer
Emergency source	Emergency source available, priority source unavailable	Emergency source
Emergency source	Emergency source available, priority source available for MRT time period	Priority source
Emergency source	Emergency source not available, priority source available	Priority source
Position 0	Priority source available, emergency source unavailable	vailable source to count down MRT before transfer to priority source
Position 0	Priority source available, emergency source unavailable	Priority source
Position 0	Priority source unavailable, emergency source available	Emergency source
Position 0	Priority source unavailable, emergency source unavailable	o action (because no suppply. When supply becomes available change to priority source or emergency source

[^5]Source being within programmed voltage and frequen-
cy settings, phases rotation being correct.

Visualisation

VISUALISATION ARCHITECTURE MODE

Automatic sequences

> Sequence description

Example:
position II = emergency source types Genset (2)
position Il = emergen ([1)

in the different menus

Controller

Automatic sequences

RETURN TO PRIORITY SOURCE
This sequence is activated as soon as the changeoverswitch is in automatic mode and in emergency position (position II):
the priority source 1 is not available

Specific feature: manual re-transfer

-When priority source comes back, it can be required not to automatically retransfer and wait for a more adequate moment.

- It is possible, validating manual retransfer feature (referto programming), to block the re-transfer.
It is initiated from:
- Via a programming input if MTF option is selected.
(ex: genset)
the emergency source is 2 available.

$\left.\begin{array}{|l|l|l|l|}\hline & \text { Problem } & \text { Action to be performed } & \\ \hline 6 & \begin{array}{l}\text { Return to } \\ \text { priority } \\ \text { surce } \\ \text { has been } \\ \text { achieved } \\ \text { but } \\ \text { source } \\ \text { (Generator) } \\ \text { is still } \\ \text { running. }\end{array} & \text { Check status of genset cool down timer (cdt). } & \begin{array}{l}\text { The cool down timer } \\ \text { (2CT) will begin when } \\ \text { transfer to position 1 } \\ \text { (priority source) has } \\ \text { been achieved. (2CT } \\ \text { time delay duration } \\ \text { can be between 0 }\end{array} \\ \text { and 60s). }\end{array}\right\}$

	Problem	Action to be performed	Expected results
1	Product is OFF (display and LEDs are off).	Check that the connections are as indicated in the technical documentation provided with the product. Specific case: Single-phase application: - Connect the incoming supply cables to terminals 104 (Neutral) and 106 (Phase). - Bridge terminals 103 and 104. - Configure the network type to 1BL in the SETUP menu. Directly check that voltage is present across the terminals with a voltmeter: - Voltage presence on Priority source $=$ terminals 104-106 (U>100Vac) - Voltage presence on Emergency source $=$ terminals 203-205 (U>100Vac)	Controller is on: "ON" LED is lit. If the product is still OFF it should be returned to
2	Product is faulty (fault is active) FT1, FT2, FT3, FT4	- Disconnect power supply to try to reset the fault - In case of programming inputs FT1 or FT2, verify if external fault is not active (atomatic reset). - In case of programming inputs FT3 or FT4, verify if external fault is not active. The fault must be reset or keypad (validation push button)	Default out
3	"SOURCE 1 availability" LED is off.	Press the "Lamp test" button.	The display and all LEDs are on.
		Message "PROT1" is shown \rightarrow reverse terminals 104 and 105.	$\begin{aligned} & \text { "SOURCE } 1 \\ & \text { availability" LED } \\ & \text { is on. } \end{aligned}$
		Check the following parameters in the SETUP menu (programming mode): - network type $\boldsymbol{-}$ NETWORK : 4NBL, 2NBL, 2BL, 1BL, 3NBL.... - nominal voltage $=$ Un : voltage across the terminals should be verified with a multimeter. - frequency -Fn : 50 or 60 Hz	
		Check the threshold and hysteresis of the nominal voltage and frequency in the VOLT and FREQUENCY menus and adjust if necessary.	
4	"SOURCE 2 availability" LED is off.	Press the "Lamp Test" button	The display and all LEDs are on.
		Note: An unloaded generator can produce a voltage and frequency > than its nominal values: - Check threshold and hysteresis settings for the nominal voltage (VOLT menu). - Check threshold and hysteresis settings for the nominal frequency (FREQUENCY menu).	"SOURCE 2 availability" LED is on.
		Check parameter Un in the SETUP menu (programming mode). This setting should correspond to the value measured across terminals 203 \& 205 with a multimeter.	
5	Retransfer is not achieved after the priority source has been restored.	Check the status of the "SOURCE 1 availability" LED. If this LED is not on, refer to the appropriate section above ("SOURCE 1 availability" LED is off). Item 3	"SOURCE 1 availability" LED is on.
		Check that the product is in automatic mode: - Auto mode on controller must not be inhibited. Check that a programmable input, if configured, has not been activated (verify that the MANU indicator is not displayed). - When utilising with change over switch verify the handle has been removed and that the selector is in the automatic position.	Automatic mode is selected.
		Check status of source 1 stability timer (Mrt). Priority source is not considered available until this timer has finished counting down.	Retransfer is achieved after Mrt delay.
		Check to see whether "MtF" (manual retransfer) has been activated in the SETUP menu (YES = enabled).	"MtF" $=\mathrm{NO}$ (manual retransfer disabled). If "MtF" = YES, Confirm retransfer. Automatic transfer is achieved.

	Problem	Action to be performed	Expected results
9	Transfer is not achieved after loss of priority source.	Verify that the controller and the transfer device have an available power supply: controller: Terminals 203-205=>100VAC (source 2). change over switch: Terminals 101-102=230VAC	Is on: "ON" LED is lit.
		Check that the product is in automatic mode: - Auto mode on the product must not be inhibited. Check that a programmable input, if configured, has not been activated (verify that the MANU indicator is not displayed). - When utilising with an controller verify the handle has been removed and that the selector is in the automatic position.)	Automatic mode is selected.
		Check the status of the "SOURCE 2 availability" LED. If this LED is not on, refer to the appropriate section above ("SOURCE 2 availability" LED is off) Item 4	"SOURCE 2 availability" LED is on.
		Check the below settings in the TIMER menu: - for time delay MFt (Main Failure timer) $\boldsymbol{\rightarrow}$ countdown when the product is OFF - for time delay dtt (delay transfer timer) $\boldsymbol{=}$ source 2 must be available for this duration before transfer is achieved.	The "AUT" LED is on. Message 2AT xxx is displayed before transfer (xxx accounts for the time delay duration, which can be between 0 and 60s)
		If the switching device is a circuit breaker, set time delay parameters OMR and OMF to a value other than zero (typically 2 sec .)	The breaker will pause in position 0 , during transfer, for the configured duration.
10	Motorised transfer of switch does not correspond to control commands I, O, II	Check cabling for control commands.	Transfer corresponds to the control commands.
		Verify the selected control logic mode LoG in the SETUP menu (pulse, contactor or circuit breaker).	
		Check RN1 and RN2 settings in the SETUP menu.	
11	Message "FLT POS" (position fault) is displayed.	In the SETUP menu, check that the number of ACs selected corresponds to the number of auxiliary contacts connected. If it does not, modify this setting accordingly. If the problem still exists, modify the AC setting to 0 . If, after pressing the ENTER key (fault reset), the message FLT POS is no longer displayed, the problem emanates from the auxiliary contact circuit (auxiliary contact of transfer device or connection error).	Error message FLT POS is no longer displayed
		Check the mechanical position of the transfer switch/breakers.	
12	Error message Err XXXX is displayed.	Failure cannot be solved-Product internal failure.	To be returned to the factory Hager for technical analysis.

SPN - Automatic Changeover with Current Limiter

Description

- Automatic performs the changeover operation to back up Genset supply on Main supply failure.
- Switches from back up Genset supply to Mains when the main supply resumes
- Performs the current limiting function with 5 Switch OFF-ON cycles in case the Load current exceeds back up supply rating

Features

- Indicates the LED for Mains ON, Genset ON and Genset Overload
- Different LED colors for clear differentiation between functions.
- Blinking LED for overload and permanent LED for overload Trip.
- Modular design
- Convenient and simple wiring terminal design.
- Auto reset if Main supply resumes on genset trip.
- RoHS compliant, CE Marking

Technical Data

- Standard: IEC 60947-3, IEC 60947-6
- Type: SPN Modular
- Voltage: 150VAC to 300VAC
- Mains Rating: 30A
- Genset Rating: 1.5 to 30A
- Utilization category: AC21A (IEC 60947-3), AC 31B (IEC 60947-6)
- Short Circuit Withstand: 3kA
- Electrical Endurance: 6000 Operations
- Terminal Size: Flexible: 10sqmm, Rigid: 16sqmm
- Terminals: IP 2X finger touch proof

EKS301B

Mains 30A, Genset 1.5A	4	EKS301B
Mains 30A, Genset 2.5A	4	EKS302B
Mains 30A, Genset 3A	4	EKS303B
Mains 30A, Genset 4A	4	EKS304B
Mains 30A, Genset 5A	4	EKS305B
Mains 30A, Genset 6A	4	EKS306B
Mains 30A, Genset 9A	4	EKS309B
Mains 30A, Genset 12A	4	EKS312B
Mains 30A, Genset 15A	4	EKS320B
Mains 30A, Genset 20A	4	EKS330B
Mains 30A, Genset 30A*		4

* without Current Limiter

Technical characteristics

Mains Rating	Genset Rating	Cat. Reference
30 A	1.5 A	EKS301B
30 A	2.5 A	EKS302B
30 A	3 A	EKS303B
30 A	4 A	EKS304B
30 A	5 A	EKS305B
30 A	6 A	EKS306B
30 A	9 A	EKS309B
30 A	12 A	EKS312B
30 A	20 A	EKS315B
30 A	30 A	EKS320B
30 A		EKS330B

Recommended MCB Ratings

ACCL Ratings		MCB Ratings	
Mains	Genset	On Mains Side	On Genset Side
30 A	1.5 A	32 A	2 A
30 A	2.5 A	32 A	3 A
30 A	3 A	32 A	3 A
30 A	4 A	32 A	4 A
30 A	5 A	32 A	6 A
30 A	6 A	32 A	6 A
30 A	9 A	32 A	10 A
30 A	12 A	32 A	16 A
30 A	15 A	32 A	16 A
30 A	20 A	32 A	20 A
30 A	30 A	32 A	30 A

Installation

Dimensions

Recommended Load Connections
Connect NECESSARY LOADS like,

1. Tube Lights / CFL's,
2. Television,
3. Mixer, Juicer etc.

Connect HEAVY LOADS
'Directly on MAINS' like,

1. Air Conditioners,
2. Geysers,
3. Motors.

MCB

Mains

TPN - Automatic Changeover with Current Limiter

Description

- ACCL performs the changeover operation between electricity board and generator supply based on electricity board power availability. ACCL is also equipped with current limiting function which limits the load on generator power to preset value.
- ACCL shall trip if device is overloaded than rated value after monitoring for 5 switch OFF-ON cycles.

Features

- Generator auto start stop \& Remote Reset for current limiting.
- Single Phase protection as selectable option.
- Auto reset on Mains return during Generator overload trip.
- LED status Indication through blinking \& permanent ON.
- Modular front facia design.
- RoHS compliant environment friendly product.

Technical Data

- IEC Standard: 60947-6-1
- Type : TPN / TPN \& TPN / SPN
- Supply voltage: 3Phase, 415VAC
- Line Voltage: 150VAC to 300VAC

Main Rating 40A, 63A

- Genset rating : 6 to 63A
- Utilization category: AC31A
- Conditional short circuit: 10kA
- Electrical Endurance: 10,000
- Terminal Size: 10 sq. mm. for 40A, 16 sq. mm. for 63A, 2.5 sq . mm. for GSS \& RR
- Terminals: IP2X finger touch proof

Time Delay: Mains to
-- Generator: 10-12 secs
-- Genset to Mains: 4 secs
-- Mains to Generator
-- (if Gen is ON): 4 secs
Overload cycles: 5 nos

- Overload switch OFF time: 8 secs

Overload switch ON time: 5 secs

	Description	Characteristics	Cat.Ref.
(4)	TPN / SPN	Mains 40A, Genset 6A	EKT406SG
		Mains 40A, Genset 10A	EKT410SG
		Mains 40A, Genset 16A	EKT416SG
		Mains 40A, Genset 20A	EKT420SG
		Mains 40A, Genset 25A	EKT425SG
		Mains 40A, Genset 32A	EKT432SG
		Mains 63A, Genset 10A	EKT610SG
		Mains 63A, Genset 16A	EKT616SG
		Mains 63A, Genset 20A	EKT620SG
		Mains 63A, Genset 25A	EKT625SG
		Mains 63A, Genset 32A	EKT632SG
		Mains 63A, Genset 40A	EKT640SG
EKT406SG	TPN / TPN	Mains 40A, Genset 10A	EKT410TG
		Mains 40A, Genset 16A	EKT416TG
		Mains 40A, Genset 20A	EKT420TG
		Mains 40A, Genset 25A	EKT425TG
		Mains 40A, Genset 32A	EKT432TG
		Mains 63A, Genset 10A	EKT610TG
		Mains 63A, Genset 16A	EKT616TG
		Mains 63A, Genset 20A	EKT620TG
		Mains 63A, Genset 25A	EKT625TG
		Mains 63A, Genset 32A	EKT632TG
		Mains 63A, Genset 40A	EKT640TG
	TPN / TPN	(without current limiting)	
		Mains 40A, Genset 40A	EKT440TG
		Mains 63A, Genset 63A	EKT663TG

Technical characteristics

Supply voltage	415VAC (P-P),230VAC(P-N)
Supply Frequency	$\mathrm{Hz}(\pm 3 \mathrm{~Hz})$
Power Consumption	Mains:12VA,@240VAC Generator:12VA,@240V
Number of poles	$3 \mathrm{P}+\mathrm{N}$
Current monitoring	Available on Generator
Mains current rating	40A/63A
Genset current rating	6A to 63A
Utilization Category	AC1 Resistive \& AC3 Motor duty as per IEC 60947-4-1
Timing accuracy	$\pm 5 \%$
Trip accuracy	$\pm 5 \%$
Duty	100\%
Mains to Generator	4 sec (If Generator is already ON)
Mains to Generator	10-12 sec (For Generator turn ON)
Generator to Mains	4 sec
Overload warning	8 sec OFF \& 5 sec ON
Warning cycle	5 ON-OFF
Over voltage cut off	$315 \mathrm{VAC}(+/-20 \mathrm{~V})$
OV recovery	270VAC (+/-20V)
OV trip time	500 ms to 4 sec
OV recovery time	10 to 30 sec
Electrical life	10,000

Dimensions

40A Model:

Contact Rating

Ratings	AC-1 (Resistive Load) @ 400VAC $\& 40^{\circ}$ C	AC-3 (Motor duty $@ 400$ VAC $\& 40^{\circ}$ C
02A	02 A	02 A
06 A	06 A	06 A
10 A	10 A	10 A
16 A	16 A	12 A
20 A	20 A	12 A
25 A	25 A	12 A
30 A	30 A	12 A
40 A	40 A	15.5 A
63 A	60 A	26 A

Contact Rating
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Ratings } & \begin{array}{l}\text { AC-1 (Resistive } \\
\text { Load) @ 400VAC } \\
\text { \& } 40^{\circ} \mathbf{C}\end{array} & \begin{array}{l}\text { AC-3 (Motor duty } \\
\text { @ 400VAC } \\
\text { \& 40 }\end{array}
$$

\hline C\end{array}\right]\)| 02 A | | |
| :--- | :--- | :--- |
| 02A | 02 A | 06 A |
| 06 A | 06 A | 10 A |
| 10 A | 10 A | 12 A |
| 16 A | 16 A | 12 A |
| 20 A | 20 A | 12 A |
| 25 A | 25 A | 12 A |
| 30 A | 30 A | 15.5 A |
| 40 A | 40 A | 26 A |
| 63 A | 60 A | |

Description

- For use as isolators in electrical circuits
- Provides isolation to downstream circuits

Technical data

- Conforms to IS/IEC 60947-3
- Ratings-25A-125A
- No. of poles - 2P, 3P \& 4P
- Utilization category - AC 22

Suitable for isolation as per IEC 60947

Features \& benefits

- Wide range
- Finger proof (IP2X) terminal
- CE \& RoHS compliant, "Green" product
- Front product labeling

Connection

In : 25, 32A
16sq mm rigid conductor
10sq mm flexible conductor
In : 40, 63A
35 sq mm rigid conductor
25 sq mm flexible conductor

In : 100A
35 sq mm rigid conductor 35 sq mm flexible conductor
In : 125A
50 sq mm rigid conductor
35sq mm flexible conductor

	Description	Rating In	Modules	Cat. Ref.
	Double pole	25A	1	SBN225N
3		32A	1	SBN232N
	$1^{1}-10$	40A	2	SBN240N
		63A	2	SBN263N
		100A	2	SBN290N
		125A	2	SBN299N
	Triple pole	32A	2	SBN332N
N225N		40A	3	SBN340N
		63A	3	SBN363N
		100A	3	SBN390N
	111	125A	4	SBN399N
	Four pole	32A	2	SBN432N
		40A	4	SBN440N
	$N_{1}, \frac{1}{1}, \frac{1}{1}, \frac{1}{0}$	63A	4	SBN463N
-3-0	$)^{---1}$	100A	4	SBN490N
		125A	4	SBN499N

SBN440N

2 way centre-off changeover switches

Description

- To switch from one source to another source of supply
- Compact DIN channel mounted device

Technical data

- Conforms to IEC 60947-1
- Ratings - 25A \& 40A
- No. of poles - 2P \& 4P
- 3 positions (I-O-II) with centre off
- Utilization category - AC 22A
- Mounting - on 35mm DIN channel

| | Description | Rating In | Modules |
| :--- | :--- | :--- | :--- | :--- |
| | Double pole | | |

SFT240N

Miniature Circuit Breakers

Comprehensive range offering reliable solution for protection of installations against overcurrent.

Advantages for you:

- Positive Contact Isolation ensuring complete protection to user
- Ergonomically designed toggle for comfort switching
- Insulated safety shutter for finger touch proof terminal
- Laser marking to ensure permanent information
- Front product labeling for displaying of load information
- Energy Limiting Class 3 to ensure low let through energy to limit thermal \& mechanical stress on cables
- Direct mounting of wide range of accessories like OV, UV, ST, AX, AL, OV + UV release

Technical data:

- Conforms to IS / IEC 60898-1:2002, IEC 60898-1995
- Ratings: 0.5 to 125 A
- No. of poles: 1P, 2P, 3P \& 4P
- Tripping characteristics: B, C \& D curves
- Breaking capacity: 10kA (as per IS/IEC 60898)
- ISI Marking

Expert tips

Front product labeling for displaying of load information

02
Ergonomically designed toggle for comfort switching

03

Laser marking to ensure permanent information

Insulated safety shutter for finger touch proof terminal

05

Direct mounting of wide range of accessories like OV, UV, ST, AX, AL, OV + UV release

06

Energy Limiting Class 3 to ensure low let through energyto limit thermal \& mechanical stress on cables

Description

- Protects circuits against over-load \& short circuit faults
- Provides isolation to downstream circuits

Technical data

- Conforms to IEC 60898-1:2002, IS/IEC 60898-1:2002
- ISI marking
- CE marking
- Ratings - 0.5 to 63 A
- No. of poles - 1P, 2P, 3P \& 4P
- Tripping curves - B, C \& D
- Breaking capacity - 10kA (as per IEC 60898-1)
- Suitable for isolation as per IEC 60947

Features \& benefits

- Positive Contact Isolation ensuring complete protection to user
- Ergonomined toggle for comfort switching
- Insulated safety shutter for finger touch proof terminal
- Laser marking to ensure permanent information
- Front product labeling for displaying of load information
- Energy Limiting Class 3 to ensure low let through energy to limit thermal \& mechanical stress on cables
- Direct mounting of wide range of accessories like OV, UV, ST, AX, AL, OV + UV release

Connection
25sq mm rigid cables
16 sa mm flexible cables

| Description | Modules \quad In (Amp) Curve | B Curve |
| :--- | :--- | :--- | :--- |

NCN220N

NCN316N

$1 P$

2P

3P
$4 P$

0.5		NCN100N	NDN100N
1		NCN101N	NDN101N
2		NCN102N	NDN102N
3		NCN103N	NDN103N
4		NCN104N	NDN104N
6		NBN106N	NDN106N
10		NBN110N	NCN110N
16		NBN116N	NDN110N
20		NBN120N	NCN120N
25		NBN125N	NCN132N

NCN432N

Description

- Protects circuits against over-load \& short circuit faults
- Provides isolation to downstream circuits

Technical data

- Conforms to IEC 60947
- CE marking
- Ratings - 80A,100A \&125A
- No. of poles - 1P, 2P, 3P \& 4P
- Tripping curve-C
- Breaking capacity - 10kA (as per IEC 60947)
- Suitable for isolation as per IEC 60947

Features \& benefits
MCBs handle can be locked in "off" position

- Large terminal capacity - upto 70 sq mm
- Steel reinforcement plate to improve terminal strength
- Serrations on jaws to provide better grip on cables
- Line-load reversible
- RoHS compliant, "Green" product
- Wide range of accessories are available

Connection capacity

35 sq mm flexible wire (50 sq mm possible with some cable end-caps)

- 70 sq mm rigid wire

IP2X terminals

HLF199S

HLF299S

HLF499S
Description $\ln (\mathrm{Amp})$ Modules Cat. Ref.

$\mathbf{1 P}$	80	1.5	HLF180S
${ }^{ \pm}$	100	1.5	HLF190S
	125	1.5	HLF199S

2P	80	3	HLF280S
$\left.\right\|^{\frac{1}{*}}$	100	3	HLF290S
	125	3	HLF299S

$3 P$	80	4.5	HLF380S
$\left.T^{ \pm}\right\|^{ \pm}$	100	4.5	HLF390S
	125	4.5	HLF399S

Miniature circuit breakers 6kA SP\&N
type ML

Description

- Protect circuits against over-load \& short circuit faults
- Provides isolation to downstream circuits

Technical data

- Conforms to IEC 60898-1
- CE marking
- Ratings -6A to 40 A
- No. of poles - 1 Pole + switched neutral in one module
- Tripping curve - C

Features \& benefits

- Compact design, SPN MCB in one mod (17.5mm) only
- Switched neutral provides complete isolation to downstream circuits
- Line-load reversible
- RoHS compliant, "Green" product
- Wide range of accessories are available

Connection
16sq mm rigid cables
10sq mm flexible cables
Prong type busbar.
IP2X terminals

	Description	Modules	In (Amp)	
	SP \& N MCB	1	6	ML506J
		1	10	ML510J
1		1	16	ML516J
-hiseat		1	20	ML520J
		1	25	ML525J
		1	32	ML532J
07		1	40	ML540J
ML516J				

Characteristics	ML	NBN	NCN	NDN	HLF
Poles	SP+N	SP DP TP FP			
Rated operational voltage UeM	230	SP 240/415 DP, TP, FP 415			
Nominal Current	$6-40 \mathrm{~A}$	$6-63 \mathrm{~A}$	$0.5-63 \mathrm{~A}$	$0.5-63 \mathrm{~A}$	80-100-125A
Breaking capacity to IEC 60 898	6 kA	10 kA	10 kA	10 kA	10 kA
Breaking capacity to IEC 60 947-2	-	-	-	-	10 KA
Rated insulation voltage UiM	500 V	500 V	500 V	500 V	
Rated impulse voltage Uimp (kV)	4000 V	4000 V	4000 V	4000 V	6000 V
Electrical endurance 0.5 to 32A 40 to 63A 80 to 125A	10000	20000			
10000	20000				
10000	20000				

Power loss
The power loss of MCB's is closely controlled by the standards and is calculated on the basis of the voltage drop across the main terminals measured at rated current. The power loss of Hager circuit breakers is very much lower than that required by the Standard, so in consequences run cooler and are less affected when mounted together.

The table below gives the watts loss per pole at rated current

MCB rated current (A)	0.5	1	2	3	4	6	10	16	20	25	32	40	50	63	80	100	125
Watts loss per pole (W)	1.3	1.5	1.7	2.1	2.4	2.7	1.8	2.6	2.8	3.3	3.9	4.3	4.8	5.2	5	5.5	8

For use with DC

Because of their quick make and break design and excellent arc quenching capabilities Hager circuit breakers are suitable for DC applications.

The following parameters must be considered.

1. system voltage:

Determined by the number of poles connected in series
2. short-circuit current:
3. tripping characteristics:

- the thermal trip remains unchanged
- the magnetic trip will become less sensitive requiring derating by $\mathrm{O} \sqrt{ } 2$ the ac value.

No. of poles	1 pole		2 poles in series	
Range	Max voltage	Breaking capacity L/R=15ms	Max voltage	Breaking capacity L/R=15ms
NBN, NCN	60 V	10 kA	125 V	10 kA
NDN	60 V	15 kA	125 V	15 kA
HLF	60 V	15 kA	125 V	15 kA

NBN, NCN, NDN						
Characteristic curve	B		C		D	
Magnetic trip	50 Hz	dc	50 Hz	dc	50 Hz	dc
Irm1	3 ln	4.5 In	5 ln	7.5 ln	10 ln	15 ln
Irm2	5 ln	7.5 ln	10 ln	15 ln	20 ln	30 ln

HLF (IEC 60-898)		
Characteristic curve	C	
Magnetic trip	50 Hz	dc
Irm1	5 In	7.1 In
Irm2	10 In	14.1 In

Latest national \& international standards covering Low Voltage Circuit Breakers provide the user with a better assurance of quality and performance by taking into account the actual operating conditions of the breaker. New definitions and symbols have been introduced which should be committed to memory. Some of those most frequently used are:
$U_{e} \quad$: rated service voltage
$U_{i} \quad$: rated insulation voltage (>Uemax)
Uimp : rated impulse withstand
I_{cm} : rated short circuit making capacity
I_{cn} : rated short circuit capacity
Ics : rated service short circuit breaking capacity
I_{cu} : rated ultimate short circuit breaking capacity
$l_{D_{n}}$: rated residual operating current (often called residual sensitivity)
In : rated current = maximum value of current used for the temperature rise test.
Dt : trip delay of residual current devices
In addition, IEC 60898 sets out to provide a greater degree of safety to the uninstructed users of circuit breakers. It is interesting to note that the description "miniature circuit breaker" or MCB is not used at all in the standard, but no doubt both manufacturers and users will continue to call circuit breakers complying with IEC 60898 miniature circuit breakers or MCBs for some time to come.

The scope of this standard is limited to ac air break circuit breakers for operation at 50 Hz or 60 Hz , having a rated current not exceeding 125A and a rated short-circuit capacity not exceeding 25 kA .

A rated service short-circuit breaking capacity $I_{\text {cs }}$ is also included which is equal to the rated short-circuit capacity $I_{\text {cn }}$ for short-circuit capacity values up to and including 6kA, and 50\% of Icn above 6kA with a minimum value of 7.5 kA . as the circuit-breakers covered by this standard are intended for household and similar use, Ics is of academic interest only. The rated short-circuit capacity of a MCB $\left(l_{\mathrm{cn}}\right)$ is the alternating component of the prospective current expressed by its r.m.s. value, which the MCB is designed to make, carry, for its opening time and to break under specified conditions. Im is shown on the MCB label in a rectangular box with the suffix ' A ' and is the value which is used for application purposes. Icn (of the MCB) should be equal to or greater than the prospective shortcircuit current at the point of application.

You will see from the curves that the inverse time delay characteristic which provides overload protection is the same on all three. This is because the standards required the breaker to carry 1.13 times the rated current without tripping for at least one hour and when the test current is increased to 1.45 times the rated current, it must trip within one hour, and again from cold if the last current is increased to 2.55 times the rated current the breaker must trip between 1 and 120 seconds. The inverse time delay characteristic of all MCBs claiming compliance with IEC 60898 must operate within these limits.

The difference between the three types of characteristic curves designated 'B', 'C' and 'D' concerns only the magnetic instantaneous trip which provides short-circuit protection.

* For type 'B' the breaker must trip between the limits of 3 to 5 times rated current
* For type ' C ' the breaker must trip between the limits of 5 to 10 times rated current, and
* For type ' D ' the breaker must trip between the limits of 10 to 20 times rated current

Often manufacturers publish their MCB tripping characteristics showing the limits set by the standard and guarantee that any breakers that you purchase will operate within these limits. So great care should be taken when working with characteristics curves showing lower and higher limits - on no account should you take a mean point for application design purposes.

For cable protection applications you should take the maximum tripping time and some manufacturers publish single line characteristics curves which show the maximum tripping time. If the design problem is nuisance tripping then the minimum tripping time should be used and for desk top co-ordination studies, both lower and upper limits have to be taken into account.

Energy limiting

Energy is measured in Joules. *James Prescott Joule proved that thermal energy was produced when an electric current flowed through a resistance for a certain time, giving us the formula :-
Joules $=I^{2} \times R \times t$ or because we know that watts $=I^{2} R$
Joules $=$ watts \times seconds
Therefore we can say that :
One Joule = one watt second
or energy $=$ watts x seconds $=I^{2} R t$
If the resistance (R) remains constant or is very small compared with the current (I) as in the case of short-circuit current, then energy becomes proportional to $\mathrm{I}^{2} \mathrm{t}$. Which is why the energy let-through of a protective device is expressed in ampere squared seconds and referred to as $1^{2} \mathrm{t}$.
$1^{2} t$ (Joule Integral) is the integral of the square of the current over a given time interval $\left(\mathrm{t}_{0}, \mathrm{t}_{1}\right)$

The $I^{2} t$ characteristic of a circuit breaker is shown as a curve giving the maximum values of the prospective current as a function of time.

Manufacturers are required by the Standard to produce the $I^{2} t$ characteristic of their circuit breakers.

The energy limiting characteristics of modern MCBs greatly reduce the damage that might otherwise be caused by short-circuits. They protect the cable insulation and reduce the risk of fire and other damage. Knowledge of the energy limiting characteristic of a circuit breaker also helps the circuit designer calculate discrimination with other protective devices in the same circuit.

Because of the importance energy limiting characteristic the Standards for circuit breakers for household and similar installations suggests three energy limiting classes based on the permissible $\mathrm{I}^{2 t}$ (let-through) values for circuit breakers up to 32A; class 3 having the highest energy limiting performance.

All Hager MCBs are well within the limits of energy let-through set by IEC 60898 for energy limiting class 3.

The circuit breaker can have the lineVload connected to either top or bottom terminals.

Temperature Derating

MCBs are designed and calibrated to carry their rated current and to operate within their designated thermal time/current zone at $30^{\circ} \mathrm{C}$. Testing is carried out with the breaker mounted singly in a vertical plane in a controlled environment. Therefore if the circuit breaker is required to operate in conditions which differ from the reference conditions, certain factors have to be applied to the standard data. For instance if the circuit breaker is required to operate in a higher ambient temperature other than $30^{\circ} \mathrm{C}$ it will require progressively less current to trip within the designated time/current zone,

Temperature correction

$\operatorname{In}(A)$	$30^{\circ} \mathrm{C}$	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$
0.5	0.5	0.48	0.46	0.44	0.42	0.40	0.38
1	1	0.96	0.92	0.88	0.84	0.80	0.76
2	2	1.92	1.84	1.76	1.68	1.60	1.52
3	3	2.88	2.76	2.64	2.52	2.40	2.28
4	4	3.84	3.68	3.52	3.36	3.20	3.04
6	6	5.76	5.52	5.28	5.04	4.80	4.56
10	10	9.60	9.20	8.80	8.40	8.00	7.60
16	16	15.36	14.72	14.08	13.44	12.80	12.16
20	20	19.20	18.40	17.60	16.80	16.00	15.20
25	25	24.00	23.00	22.00	21.00	20.00	19.00
32	32	30.72	29.44	28.16	26.88	25.60	24.32
40	40	38.40	36.80	35.20	33.60	32.00	30.40
50	50	48.00	46.00	44.00	42.00	40.00	38.00
63	63	60.48	57.96	55.44	52.92	50.40	47.88
80	80	77.60	75.10	72.60	70.00	67.20	64.40
100	100	96.60	93.10	89.40	85.60	81.60	77.50
125	125	121.90	118.90	115.70	112.40	109.10	105.60

Grouping factors

Consideration should also be given to the proximity heating effect of the breakers themselves when fully loaded and mounted together in groups. There is a certain amount of watts loss from each breaker depending on the trip rating which may well elevate the ambient air temperature of the breaker above the ambient air temperature of the enclosure.

Grouping factor (rated current reduce by factor K)

No. of Units	K	HLF
$n=1$	1	1
$2 n<4$	0.95	1
$4 n<6$	0.9	1
$6 n$	0.85	1

Effects of frequency change

thermal - unchanged
magnetic - value multiplied by coefficient K

$F(H z)$	$17 \mathrm{~Hz}-60 \mathrm{~Hz}$	100 Hz	200 Hz	400 Hz
K	1	1.1	1.2	1.5

Example

Five circuit breakers are to be installed inside an enclosure in a switchroom which has an average ambient air temperature of $35^{\circ} \mathrm{C}$. Each circuit breaker will be required to supply a continuous current of 20 A .

From table, we would select a circuit breaker which has a rated current of 25 A at $30^{\circ} \mathrm{C}$ and 23.5 A at $35^{\circ} \mathrm{C}$. This takes care of the switchroom ambient air temperature of $35^{\circ} \mathrm{C}$, but we also have to take into account the grouping factor of live continuously loaded breakers mounted together in one enclosure. Table gives us a grouping factor K of 0.9 . We then apply this grouping factor to the rated current at $35^{\circ} \mathrm{C}$ which gives us a circuit breaker rated current of $23.5 \times 0.9=21.15 \mathrm{~A}$ in the specified conditions

Lighting circuits

Although the MCBs prime function is the protection of lighting circuits, they are often used as local control switches as well, conveniently switching on and off large groups of luminaries in shops and factories. The MCB is well able to perform this additional task safely and effectively. Hager MCBs have an electrical endurance of 20,000 on/off operations for MCBs up to and including 32A and 10,000 on/off operations for 40, 50 and 63A MCBs.

For the protection of lighting circuits the designer must select the circuit breaker with the lowest instantaneous trip current compatible with the inrush currents likely to develop in the circuit.

High Frequency (HF) ballasts are often singled out for their high inrush currents but they do not differ widely from the conventional 50 Hz . The highest value is reached when the ballast is switched on at the moment the mains sine wave passes through zero. However, because the HF system is a "rapid start" system whereby all lamps start at the same time, the total inrush current of an HF system exceeds the usual values of a conventional 50 Hz system. Therefore where multiple ballasts are used in lighting schemes, the peak current increases proportionally.

Mains circuit impedance will reduce the peak current but will not affect the pulse time.

The problem facing the installation designer in selecting the correct circuit breaker is that the surge characteristic of HF ballasts vary from manufacturer to manufacturer. Some may be as low as 12A with a pulse time of 3 ms and some as high as 35A with a pulse time of 1 ms . Therefore it is important to obtain the expected inrush current of the equipment from the manufacturer in order to find out how many HF ballasts can safely be supplied from one circuit breaker without the risk of nuisance tripping.

This information can then be divided into the minimum peak tripping current of the circuit breaker as shown in the Table below.

Minimum peak tripping current

Circuit breaker type	Circuit breaker rated current									
	6 A	$10 A$	$16 A$	$20 A$	$25 A$	$32 A$	$40 A$	$50 A$	$63 A$	
B	26	43	68	85	106	136	170	212	268	
C	43	71	113	142	177	223	283	354	446	
D	85	142	226	283	354	453	566	707	891	

Example:

How many HF ballasts, each having an expected inrush of 20A can be supplied by a 16A type C circuit breaker? From table above, 16A type C we have a minimum peak tripping current of 113A.

Therefore, $113 / 20=5$
i.e. 5 ballasts can be supplied by a 16A type C circuit breaker.
'B’curve (IEC 60898)
MCBs: NBN rated 6-63A

'C' curve (IEC 60898)
MCBs: NCN rated 0.5-63A HLF rated 80-125A

'D' curve (IEC 60898)
MCBs: NDN rated 0.5-63A

current limiting at 400V
NBN NCN NDN

HLF

$I^{2} \mathrm{t}$ characteristics

Residual current circuit breakers

Offer excellent protection against earth leakage currents.

Residual Current Circuit Breakers

contemporary range with user friendly features to ensure earth leakage protection

Advantages for you:

- Earth fault Indicator on front face for easy fault diagnosis
- Contact position indication on front face
- Bi-connect terminals for simultaneous termination of bus bar \& wires
- Unique pull up terminals with safety shutters for enhanced safety of users
- IEC, CE \& RoHS compliance
- Hi version for disturbed electrical networks having pulsated, DC currents, harmonics and transient voltage

Technical data:

- IS 12640-1, IEC 61008
- ISI marking
- Ratings - 16A, 25A, 40A, 63A, 100A
- No. of poles - 2P \& 4P
- Sensitivity - $10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA} \& 300 \mathrm{~mA}$
- Trip class - class AC and class Hi
- Earth fault trip indicator on front face
- Protection against nuisance tripping caused by switching transients

Expert tips

Earth fault indication on front face

Grey : normal condition
Yellow : tripping on earth fault

- yellow flag provides visual indication on earth fault

02
User friendly terminal design

- bi-connect terminal
- pull-up design
- safety shutter (IP 2X)
- line - load reversible

03

Positive contact
indicator
Red : ON
Green : OFF

- more safety to the user
- positive contact indication
- indicates actual contact position

04

Special Hi RCCBs for commercial application

- ideal earth leakage protection solution for offices, IT parks \& BPOs
- avoid nuisance tripping in electrical networks with electronic loads
- ensure tripping in networks with pulsated DC components

Description

- Automatically trips in event of earth leakage fault
- Provides protection against direct \& indirect contact with live parts

Technical data
IS 12640-1, IEC 61008

- ISI marking
- CE marking
- Ratings - 16A, 25A, 40A, 63A
- No. of poles - 2P \& 4P
- Sensitivity - $10 \mathrm{~mA}, 30 \mathrm{~mA}, 100 \mathrm{~mA} \& 300 \mathrm{~mA}$
- Trip class - class AC

Features \& benefits

- Positive contact indicator on front face

Earth fault indicator on front face

- Bi-connect terminals with pull-up design
- Finger proof (IP2X) terminal with safety shutters

Protection against nuisance tripping due to switching transients

- CE \& RoHS compliant, "Green" product
- Wide range of accessories are available

Connection

25-63A: 25sq.mm rigid / 16sq.mm flexible
100A: 50sq.mm rigid / 35sq.mm flexible

Description

- Automatically trips in event of earth leakage fault
- Provides protection against direct \& indirect contact with live parts
- Suitable for electrically disturbed networks with pulsated DC, transients \& harmonics
- Avoids "nuisance tripping" \& "blinding"

Technical data

Conforms to
IEC 61008

- Ratings - 25A, 40A, 63A
- No. of poles - 2P \& 4P
- Sensitivities - 30mA \& 300mA
- Trip Class - class H

Features \& benefits

- Positive contact indicator on front face
- Earth fault indicator on front face

Bi-connect terminals with
pull-up design
Finger proof (IP2X) terminal with safety shutters

- Protection against nuisance tripping due to switching
transients \& harmonics
Avoids "blinding" due to
pulsated DC currents
RoHS compliant, "Green" product
- Wide range of accessories are available

Connection

25sq.mm rigid
16sq.mm flexible

	Sensitivity IDn	Rating In	Modules	Cat. Ref.
	Double Pole (1P + N) 30 mA	25A	2	CH225J
		40A	2	CH240J
		63A	2	CH263J
e^{π}	300 mA	25A	2	CQ225J
		40A	2	CQ240J
		63A	2	CQ263J
	Four pole 30 mA	25A	4	CH425J
		40A	4	CH440J
CH225J		63A	4	CH463J
	300 mA	25A	4	CQ425J
+		40A	4	CQ440J
		63A	4	CQ463J

CQ440J

Description

- Provides protection on over-load, short-circuit \& earth
leakage faults
- Compact 2 pole, 2 module device, saves space

Technical data

- Conforms to

IEC 61009

- Ratings - 6 to 40 A
- No. of poles - 2 pole (in 2
modules)
- Sensitivity - $30 \mathrm{~mA}, 100 \mathrm{~mA} \& 300 \mathrm{~mA}$
- Tripping curve - C

Trip Class - class AC

- Breaking capacity - 6kA as per IEC 61009

Features \& benefits:
Earth fault indicator on front face

- Bi-connect terminals with pull-up design
- Finger proof (IP2X) terminal with safety shutters

Energy let thru Class 3 reduces stress on cables \& insulators

- RoHS compliant, "Green" product
- Wide range of accessories are available

Connection
25sq.mm rigid
16sq.mm flexible

Description

- Provides protection on overload, short-circuit \& earth leakage faults
- Suitable for electrically disturbed networks with pulsated DC, transients \& harmonics

Technical data

- Conforms to

IEC 61009

- Ratings - 6 to 40A
- No. of poles - 2P
- Sensitivities - 30mA \& 300mA
- Tripping curve - C
- Trip class - class Hi
- Breaking capacity - 6kA as per IEC 61009

Features \& benefits

- Earth fault indicator on front face
- Bi-connect terminals with pull up design
- Finger proof (IP2X) terminalwith safety shutters
- Protection against nuisance tripping due to switching transients \& harmonics
- Avoids "blinding" due to pulsated DC currents
- RoHS compliant, "Green" product
- Wide range of accessories are available

Connection

25sq.mm rigid
16sq.mm flexible

Sensitivity IDn

Double Pole (1P + N)
30 mA

ADH956

6A	2	ADH956
$10 A$	2	ADH960
$16 A$	2	ADH966
$20 A$	2	ADH970
$25 A$	2	ADH975
$32 A$	2	ADH982
$40 A$	2	ADH990

300 mA

Rating In
Modules Cat. Ref.

6A	2	AFH956
$10 A$	2	AFH960
$16 A$	2	AFH966
$20 A$	2	AFH970
$25 A$	2	AFH975

Description

- Provides protection on over-load, short-circuit \& earth leakage faults
- 2 pole RCBO-4 module width
- 4 pole RCBO-7.5 module width

Technical data

ISI Marked

- Conforms to IEC 61009

IS 12640-2

- Ratings - 6 to 63 A
- No. of poles - 2 pole and 4 pole

Sensitivity - 30mA, 100mA \& 300mA
Tripping curve - C

- Trip Class - class AC
- Breaking capacity - 10kA

Features \& benefits

- No of Poles: 2P, 4P
- Current Rating: 6A to 63A
- Sensitivity: 30, 100, 300mA
- Breaking Capacity: 10kA

RCD Type: Type AC

- MCB Trip Curve: C
- Trip Indication: Blue colour on toggle

Terminal Cover: Yes
Accessories: Yes (on the left side)

Connection
25sq.mm rigid
16sq.mm flexible

Sensitivity IDn
Rating In
Modules
Cat. Ref.

Double Pole
30 mA

100 mA

300 mA

$16 A$	4	AFC216Y
$25 A$	4	AFC225Y
$32 A$	4	AFC232Y
$40 A$	4	AFC240Y
$63 A$	4	AFC263Y

Four Pole
30 mA

100mA

300mA

16 A	7.5	ADC416Y
25 A	7.5	ADC425Y
32A	7.5	ADC432Y
40 A	7.5	ADC440Y
63A	7.5	ADC463Y

16 A	7.5	AEC416Y
25 A	7.5	AEC425Y
32 A	7.5	AEC432Y
40 A	7.5	AEC440Y
63 A	7.5	AEC463Y
16A	7.5	AFC416Y
$25 A$	7.5	AFC425Y
$32 A$	7.5	AFC432Y
40 A	7.5	AFC440Y
$63 A$	7.5	AFC463Y

Residual current devices
A residual current device is the generic term for a device which simultaneously performs the functions of detection of the residual current, comparison of this value with the rated residual operating value and opening the protected circuit when the residual current exceeds this value.

For fixed domestic installations and similar applications we have two types :-

- Residual current operated circuit-breaker without integral over-current protection (RCCB) which should comply with the requirements of IEC 61008
- Residual current operated circuit-breaker with integral over-current protection (RCBO) which should comply with the requirements of IEC 61009

Both RCCBs and RCBOs are further divided into types depending on their operating function:

Type AC for which tripping is ensured for residual sinusoidal alternating currents, whether suddenly applied or slowly rising.

Type A for which tripping is ensured for residual sinusoidal alternating currents and residual pulsating direct currents, whether suddenly applied or slowly rising.

Type S for selectivity, with time-delay.

S

CBs must be protected against over-current (overload \& short-circuit) by means of circuit-breakers or fuses

RCBOs have their own in built short-circuit protection, up to its rated breaking capacity

RCCBs - domestic installation
RCCBs can be installed in two ways:

1. whole house protection
2. per phase isolation (PPI)

Whole house protection is provided typically by a consumer unit where the RCCBs serves as the main switch. Although very popular this suffers from a disadvantage: all circuits are disconnected in the event of fault. Selective protection can be provided by associating the RCCBs with identified high risk circuits by adopting one or more of the following:

- Split busbar consumer unit:

All circuits are fed via an overall isolator and selected circuits fed additionally via the RCCBs. Typical circuits fed direct are lighting, freezer, storage heating: and circuits fed via the RCCBs are socket outlets, garage circuits. This concept minimises inconvenience in the event of fault.

- Per phase isolation (PPI):

A 30 mA RCD is used as sub-incomer for each individual phase. In event of a fault, only faulty phase is disconnected and supply to remaining healthy phases is not affected.

Nuisance tripping

All Hager RCCBs incorporate a filtering device preventing the risk of nuisance tripping due to transient voltage (lightning, line disturbances on other equipment) and transient currents (from high capacitive circuit).

Two opposing diodes placed in parallel to secondary coil prevent voltage surges from reaching the secondary and hence the delay.

Working principle of RCCBs

Current flowing through torroid in healthy circuit

$$
\overrightarrow{\mathrm{I}_{\text {res }}} \propto \overrightarrow{\mathrm{I}_{1}}+\overrightarrow{\mathrm{I}_{2}}=
$$

Current flowing through torroid in circuit with earth fault I_{3}

$$
\overrightarrow{\mathrm{I}_{\text {res }}} \propto \overrightarrow{\mathrm{I}_{3}}=\overrightarrow{\mathrm{I}_{1}}+\overrightarrow{\mathrm{I}_{2}}
$$

The drawing above shows how a torroid is located around the line and neutral conductors to measure the magnetic fields created by the current flowing in these conductors. The sum of the magnetic fields set up by these currents (which takes into consideration both the magnitude and phase relationship of the currents) is detected by the torroid.

In a normal healthy circuit the vector sum of the current values added together will be zero. Current flowing to earth, due to a line earth fault, will return via the earth conductor, and regardless of load conditions will register as a fault. This current flow will give rise to a residual current (Ires) which will be detected by the device.

It is most important that the line and neutral conductors are passed through the torroid. A common cause of nuisance operation is the failure to connect the neutral through the device.

RCCBs work just as well on three phase or three phase and neutral circuits, but when the neutral is distributed it must pass through the torroid.

Use of RCCBs
RCCBs offer excellent protection against earth leakage currents, the main areas of application being as follows:

- Zs value too high to allow disconnection in the required time

Where the overcurrent protection or a circuit breaker cannot provide disconnection within the specified time because the earth fault loop impedance is too high, the addition of RCCB protection may well solve the problem without any other change in the system. Because of its high sensitivity to earth fault current and its rapid operating time, in most cases the RCCB will ensure disconnection within the specified time. This is achieved without any detriment to overcurrent discrimination because, unlike the situation in a fuse based system, the increased sensitivity is obtained without increasing sensitivity to overcurrent faults. Use of RCCBs in this way can be particularly useful for construction sites and bathrooms where disconnection times are more stringent than for standard installations. (Construction sites - 0.2 s at 220-277V, bathrooms 0.4 s .

The limitation to this technique is the requirement that the rated residual operating current multiplied by Zs should not exceed 50V. This is to avoid the danger of exposed conductive parts reaching an unacceptably high voltage level.

Residual current protection can even be added to a completed distribution system where the value of Zs is excessive, either because of a design oversight or subsequent wiring modification.

- Protection against shock by direct contact

So far we have considered shock by indirect contact only. Direct contact is defined thus:

Direct contact - contact of persons or livestock with live parts which may result in electric shock. The consideration here is not the hazard of parts becoming live as a result of a fault but the possibility of touching circuit conductors which are intentionally live.

RCCBs, although provides good protection against the potentially lethal effects of electric shock, must not be used as the sole means of protection against shock by direct contact. The other measures that should be taken are :

- insulation of live parts
- barriers or enclosures
- obstacles
- placing live parts out of reach

Additionally an RCCB used for this purpose should have:

- a sensitivity of 30 mA
- an operating time not exceeding 40 mS at a residual current of 150 mA

The specified sensitivity is based on research that has been carried out to estimate the effect of various levels and duration of current can have on the human body. This experience is summarised in a graph shown in 'IEC 60479-1: Effects of current passing through the human body'. A simplified version of this graph is shown. It shows that very small currents can be tolerated for reasonably long periods and moderate currents for very short periods. It can be seen, for instance, that 100mA for 100mS or 20 mA for 500 mS will not normally cause any harmful effect. 200 mA for 200 mS or 50 mA for 500 mS which are in Zone 3, would be more dangerous; and shock levels in Zone 4 carry a risk of lethal consequences.

The tripping characteristic for a 30mA RCD is also shown in the graph. It shows the level of current required to cause the RCD to trip, for example; 50 mA will cause a trip but not 10 mA . Comparing its characteristic with the various zones on the graph it can be seen that the 30mA RCD gives a very good measure of protection against the hazards associated with electric shock. Where a higher level of protection is required, for example in laboratories, 10 mA devices are available.

Note:

Although RCDs are extremely effective devices they must never be used as the only method of protection against electric shock. With or without RCD protection all electrical equipment should be kept in good condition and should never be worked on live.

Various national \& international regulations make it mandatory to use RCCBs in electrical installation. For ex - IEC-60364 standard also deals with protection against electric shocks resulting from direct \& indirect contacts with electrically parts in electrical installations. IS-12640 part I \& part II and IEC-61008 \& IEC-61009 gives guidelines for residual current devices for protection against electric shocks.

RCCBs are an efficient protection device for ensuring people's protection against electrical shocks resulting from direct and indirect contact with electrically live parts in any installation.

RCCBs are used for various applications depending upon different current sensitivities.

- 30mA RCCB - for protection against direct contacts
- 100 mA RCCB - for protection against indirect contact / in large or old installations where natural leakage is high
- 300mA RCCB - for protection against fire, insulation faults in commercial \& industrial installations

High Immunity (Hi) RCCBs

Increased use of semi-conductors in electronic instruments in commercial application such as computers, printer, photocopiers and other nonlinear loads and in industrial applications such as VFD, thristors, inverters, speed controllers have increased problems of pulsated DC currents, harmonics and transients in electrical networks. These electrical disturbances (pulsated DC currents, harmonics and transients) distorts the pure sine waveform of alternating current and lowers the overall power quality.

RCCB being a very sensitive device may trip due to these electrical disturbances in the system, which deforms/distort the sine wave.

These disturbances can be due to:

- External disturbance - High voltage network disturbance, natural lightening
- Internal disturbances - Harmonics - non linear loads like VFD, electronic loads Pulsated DC currents - Thyristors, SMPS, electronic loads Switching surges - switching of induction motors, transformers

IEC 61008 defines RCCB as per following class:

- Class AC - for normal AC supply networks with no harmonics
- Class A - for disturbed AC supply networks having pulsated DC currents
- Class B - for pure DC networks

Effect of network disturbances of working of RCCBs
Pulsated DC currents
Electrical networks feeding power to devices like SMPS, thyristors, dimmers, VFDs, power electronics etc. would generate pulsated DC components in the leakage currents.

As per Faraday's law, the rate change of flux generated at the core due to the leakage current with pulsated DC components is not proportional to the magnitude of the leakage current. The tripping relay then would not have sufficient power to trip the RCCB, thereby compromising on safety. This phenomena is know as "Blinding" of RCCBs.

Harmonics

In a normal alternating current power system, the voltage varies sinusoidally at a specific frequency, 50 hertz for India. When a linear electrical load is connected to the system, it draws a sinusoidal current at the same frequency as the voltage (though usually not in phase with the voltage).

When a non-linear load, such as a rectifier, is connected to the system, it
draws a current that is not necessarily sinusoidal. The current waveform can become quite complex, depending on the type of load and its interaction with other components of the system. It is possible to decompose it into a series of simple sinusoidal waveforms, with each waveform having a frequency which is an integer multiple of fundamental frequency. These current waveforms which have frequency which is integer multiple of main power frequency current is known as harmonic current. Some common examples of non-linear loads include common office equipment such as computers and printers, and also variable speed drives.

These high frequency harmonic current negatively affects the performance of RCCBs. Harmonic current increases the impedance of the secondary circuit (given by $\mathrm{XL}=2 \mathrm{nfL}$) of the RCCB CBCT. This increase in impedance of secondary circuit hampers the power transfer to the tripping relay. It leads to non-tripping of RCCBs which is also known as "blinding" of RCCBs.

Transients

Transient over voltages when present in a network generally exceeds the insulation voltage of an installation. This leads to momentary puncture of the insulation, thereby generating leakage current, causing nuisance tripping of AC class RCDs. AC class RCDs cannot differentiate between a transient and permanent leakage current.

Effects of electronic loads on RCCBs

Electronic devices like computers, printers, copiers, medical equipments like x-ray machines, to comply with EMC directives, are equipped with interference filters. These interference filters generate permanent leakage current to the tune of 1.5 mA . When a few such loads are connected in a network, the summation of the leakage currents may cross the tripping threshold, and trip the AC class RCD. The risk is high when the installed $R C D$ is $A C$ class with sensitivity of 30 mA .

Effect of harmonic filters on RCCBs

Harmonics generated and circulating in the networks is harmful and needs to be eliminated by employing filtering condensers between phase / neutral \& earth, i.e Harmonic filters. This is essential to facilitate proper functioning of other equipments connected in the network.

AC class RCDs installed in such networks cannot differentiate between a high frequency harmonic leakage current bypassed to the earth and a normal 50 HZ leakage current and trips.

In summary, electrical disturbance in power supply interferes with the operation of RCCBs connected to network. These disturbances have following effects on the working of residual current devices:

- Nuisance Tripping
- RCCB may trip without a genuine earth leakage.
- Continuity of supply is affected, though no compromise in people's safety.
- Blinding
- RCCB may not trip on a genuine earth leakage
- People's safety is no longer guaranteed

In both above cases, either continuity of supply or people's safety is compromised which is not desirable.

To take care of "blinding" \& "nuisance tripping" problems, Hager offers special "Hi RCCB" which can withstand the disturbances which causes nuisance tripping or blinding in normal (class AC \& class A) RCCBs.
Hager Hi RCCBs have following design features which make it superior than Class A or AC RCCBs for electrically disturbed networks:

- specially designed torrid which solves the problem of non-activation of relay in case of leakage of pulsated DC current.
- electronic filter circuits for treatment of tripping signals to improve the performance compared to standard RCCBs.
- Improved tripping band of $80-100 \%$ of rated sensitivity which is much narrower than a normal class AC RCCBs (50-100\%).

Ph

currents, harmonics \& transients is shown above.
Hager Hi (High Immunity) RCCBs provides reliable earth leakage protection in electrically disturbed networks (electrical networks having pulsated DC components, harmonics \& switching transients).

Comparison of Hager Hi RCCBs with Class A \& Class AC RCCBs generally available
Following table shows the comparison between Class AC, Class A \& Hager Hi RCCBs.

RCCB type	Suitable for electrical networks with		
	Pulsated DC current	Harmonics	Switching surges
Class AC RCCB	No	No	No
Class A RCCB	Yes	No	No
Hager Hi RCCB	Yes	Yes	Yes

Class A RCCB may not work satisfactorily in electrical networks disturbed by harmonics \& switching transients and may give nuisance tripping.

Hager Hi (High Immunity) RCCBs are suitable for earth leakage protection in electrically disturbed networks (electrical networks having pulsated DC components, harmonics \& switching transients).
Hager Hi RCCBs employs special filter circuits to avoid "nuisance tripping" (tripping without any genuine fault) and ensure tripping on genuine earth faults (avoids blinding).

Various disturbances causing nuisance tripping or blinding
Following table shows the common loads in commercial \& industrial application which generate pulsated DC components or harmonics.

Disturbance	Nuisance Tripping	Blinding	Loads / Factors
50 Hz constant leakage currents	$!$		Charged Cables
HF Transient leakage currents / Equipped with filters	$!$!	Electronic Ballasts, Dimmers, SMPS, Power Electronic Equipments
Leakage currents with pulsed DC components			DC Motors, SMPS, Variable Speed Drives
Devices with interference filters for EMC complaince	$!$		Computers, Printers, Copiers, X rays, Medical equipments
Lightning surges	$!$	$!$	Natural lightning
Switching surges			Motors, Transformers, Neon Lights

Technical Specifications

Standards	IEC 61008-1, IS 12640 (Part 1)
Rated Current In	25, 40, 63A
No. of poles	2 P \& 4P
Sensitivity	10, 30, 100 \& 300mA
Class	Class AC \& Class Hi (high immunity)
Rated Voltage	230V (2P) - for 25-3A, 240V for 100A 230/400V (4P) - for 25-63A, 240/415V for 100A
Rated Frequency	50 Hz
Rated Residual Making \& Breaking Capacity IDm	1500A(2P), 630A(4P)
Rated Making \& Breaking Capacity IDm	1500A(2P), 630A(4P)
Short Circuit Withstand: with fuse back up	10kA for 25, 40A; 6kA for 63A
with MCB 10kA back up	10kA for 25, 40A; 9kA for 63A
Rated Impulse Withstand Voltage 1.2/50 s	4KV
Electrical Endurance at pf $=0.9$	10000 operations
Rated Insulation Voltage Ui	500 V
Dielectric Voltage	2500V
Degree of Protection	IP2X
Contact Flag Indication	Red for ON, Green for OFF
Fault Indication	Yellow flag indication
Ambient Temperature	-25 to $+40^{\circ} \mathrm{C}$
Storage Temperature	-55 to $+70^{\circ} \mathrm{C}$
Mounting Position	Horizontally, vertically or flat
Bus Bars	KDNxxx

Residual current circuit breaker with over current protection (RCBO)

RCBO gives combined protection against earth leakages as well as against overloads and short circuits.

Technical Specifications

Standards	IEC $61009-1, \mathrm{EN} 61009-1$
Rated Current In	$6,10,16,20,25,32 \& 40 \mathrm{~A}$
No. of Poles	2 P
Sensitivity	$30,100 \& 300 \mathrm{~mA}$
Class	Class AC \& Class Hi (high immunity)
Tripping curve	C curve $(5-10 \mathrm{in})$
Energy Limiting Class	3
Rated Voltage	240 V AC
Rated Frequency	50 Hz
Rated Residual Making and Breaking Capacity I 4 m	1500 A
Electrical Endurance at pf $=0.9$	10000
Rated Insulation Voltage Ui	500 V
Dielectric Voltage	2500 V
Degree of protection	IP 2 X
Fault Indication	Yellow flag indication
Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $+30^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Mounting Position	$\mathrm{Horizontally} Vertically or Flat$,
Bus bars	KDNxxx

Product presentation

Contact position indicator

The mechanical indicator on the front of RCCB shows the physical position of the contacts.

- Red indication for closed contacts
- Green indication for open contacts

The green indication is the guarantee that the contacts are open and that the terminals are not live.

Positive contact indication

Trip indicator

The status of the RCCB can be visualised by the colour of the trip indicator in addition to the position of the operating lever.

- Grey indication for normal conditions (even when operating lever is in ON/OFF position)
- Yellow indication for tripped condition, operating lever in OFF position

Similar condition exists when TEST button is pushed or RCCB is remotely tripped via protection auxiliaries.

Earth leakage fault indication

Mounting of auxiliaries

It is possible to mount two auxiliaries on RCCB.

- Auxiliary CZ 001 for ON/OFF status and TRIP indication is mounted first on the left hand side of the RCCB.
- Additional protection auxiliary MZ 203 to MZ 209 can be mounted besides CZ 001.

Auxiliaries association possibilities

Description

- RCD Add on blocks (RCD AoB) suitable for 80, 100 \& 125A HLF MCBs
- Fits on right side of 3P \& 4P HLF MCBs
- Protection against fire caused by insulation faults $-300 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}$
- Protection against electric shocks - 30mA
- Combined unit (HLF MCB+RCD AoB) provides protection against over-loads, short-circuits \& earth leakage faults

Technical Data

- Conforms to IEC 61009, IEC 60947-2
- Rating - 125A
- No. of poles - 3P \& 4P
- Sensitivity -
-- Fixed - 30mA \& 300mA
-- Adjustable - 300, $500 \mathrm{~mA}, 1 \mathrm{~A}$
- Trip time
-- Fixed - instantaneous
-- Adjustable - 0, 60, 150 msec
- Trip class -
-- AC for normal circuits
-- Hi for electrically disturbed networks
- Breaking capacity - 10kA (with HLF MCBs)

Feature \& benefits

Common rating for 80,100 \& 125A HLF MCBs

- Choice of fixed or adjustable sensitivity
- Choice of instantaneous trip or trip time delay version
- Class AC and class Hi versions

Connection

- 35 sq mm flexible wire
(50 sq mm possible with
some cable end-caps),
- 70 sq mm rigid wire

IP2X terminals

		Rating	Sensitivity / Trip time	Modules	Cat. Ref.
	Type AC				
	3 P	125A	30 mA , instantaneous trip	6	BDC380E
		125A	adjustable sensitivity - 300/500mA/1A Trip time - Inst, 60msec, 150 msec	6	BTC380E
4	4 P	125A	30 mA , instantaneous trip	6	BDC480E
		125A	300 mA , instantaneous trip	6	BFC480E
		125A	adjustable sensitivity $-300 / 500 \mathrm{~mA} / 1 \mathrm{~A}$ Trip time - Inst, 60msec, 150 msec	6	BTC480E
BTH380E	Type Hi				
	3 P	125A	30 mA , instantaneous trip	6	BDH380E
		125A	adjustable sensitivity - 300/500mA/1A Trip time - Inst, 60msec,150 msec	6	BTH380E
	4P	125A	30 mA , instantaneous trip	6	BDH480E
		125A	300 mA , instantaneous trip	6	BFH480E
		125A	adjustable sensitivity - 300/500mA/1A Trip time - Inst, 60msec, 150 msec	6	BTH480E

BDC480E

RCBO offers three in one protection against earth leakages, over-loads and short-circuits.

Technical Specifications	
Standards	IEC 60947-2, IEC 61009-1
Rated Current In	6 A to 63A
No. of Poles	2 P \& 4P
Sensitivity	30,100 \& 300mA
Class	Class AC
Tripping curve	C type
Energy Limiting Class	3
Breaking capacity	10 KA
Rated Voltage	230 V AC (2 pole)
Rated Frequency	$230 / 400 \mathrm{~V}$ AC (4 pole)
Rated Residual Making and Breaking Capacity IDm	50 Hz
Degree of protection	1500 A
Terminal Cover	IP2X
Accessories	yes
Fault Indication	Aux, trip, ST, OV, UV
Ambient Temperature	Mechanical Fault Indication ${ }^{*}$ (on handle)
Storage Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Mounting Position	$-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Horizontally, Vertically or Flat	

* Earth leakage trip indicator: blue printing on the AOB handle.

RCD add on block - 125A (for HLF MCBs)

Technical Specifications	
Standards	IEC 60947-2, IEC 61009
Rated Current In	125A
No. of Poles	3 P \& 4P
Sensitivity	Fixed - 30mA, 300 mA adjustable $-300 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}$
Class	Class AC \& Class Hi (high immunity)
Tripping time	Fixed - instantaneous adjustable - Inst. 60msec, 150 msec
Tripping curve	Depending on MCB
Energy Limiting Class	Depending on MCB
Rated Voltage	230V-2P, 415V-4P
Rated Frequency	50 Hz
Rated Residual Making and Breaking Capacity $1 \Delta \mathrm{~m}$	1500A
Degree of protection	IP2X
Fault Indication	Mechanical Fault Indication* (on handle)
Ambient Temperature	$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Mounting Position	Horizontally, Vertically or Flat

Operating ON

Operating OFF

TEST

(3)

Test regularly

Auxiliaries association possibilities
(see catalogue for more details)

- Auxiliary contacts
- Alarm contacts
- Shunt trip
- Undervoltage release
- Overvoltage release
- Locking kit

All auxiliaries are common to
multi-pole circuit breakers.
These auxiliaries are fitted to the left hand side of devices.

	$25,40 \& 63 \mathrm{~A}$	25 A	40 \& 63A
No. of poles	2	4	4
No. of modules	4	6	7.5
Weight (g)	154 g	174 g	250 g
Qty per pack	1	1	1

Auxiliaries and accessories for MCBs, RCCBs and RCBOs

Description

- Auxiliaries are common to both single / multi-pole circuit breakers
- These auxiliaries are fitted to the left hand side of devices
- Use of MZ203, MZ204, MZ205, MZ206 and MZ209 on RCCBs requires the use of interface auxiliary CZ 001

Connection capacity
6sq. mm. rigid cables 4sq. mm. flexible cables

	Description	In (Amp)	Modules	Cat. Ref.
MZ201	$\int_{14}^{\text {Auxiliary contacts }}$	$1 \mathrm{NO}+1 \mathrm{NC}$ auxiliary contact indication of main contact status. 6A - 230V~ Use with MCB / RCBOs	1/2	MZ201
	Alarm contacts $\overbrace{92}^{91} \quad \sum_{94}^{93})^{9}$	trip alarm contact is used to indicate tripping of connected device on fault (e.g. MCB tripped on overload or short circuit). $\begin{aligned} & 1 \mathrm{NO}+1 \mathrm{NC} \\ & 6 \mathrm{~A}-230 \mathrm{~V} \sim \end{aligned}$ Use with MCB / RCBOs	1/2	MZ202
	Auxiliary + alarm switch (for RCCBs) $\left(\begin{array}{ll} 91 & 93 \\ \hline & \\ 92 & 94 \end{array}\right)$	indicates the position of the associated RCCB on, off, tripped. Also acts as RCCB interface with standard MCB auxiliaries MZ203, MZ204, MZ205, MZ206 \& MZ209 $2 \mathrm{NO}+2 \mathrm{NC}$ 6A-230V~ Use with RCCBs)	1	CZ001
MZ203	Shunt trip	allows remote tripping of the connected device. $\begin{aligned} & 230 \mathrm{~V}-415 \mathrm{~V} \text { AC } \\ & 110 \mathrm{~V}-130 \mathrm{~V} D C \end{aligned}$	1	MZ203
		$\begin{aligned} & 24 \mathrm{~V}-48 \mathrm{~V} \text { AC } \\ & 12 \mathrm{~V}-48 \mathrm{VC} \end{aligned}$	1	MZ204
	Under voltage release	allows MCB to be closed only when voltage is above 70\% of Un MCB will automatically trip when voltage falls by 35% of Un		
MZ206		$\begin{aligned} & 48 \mathrm{~V} \text { DC } \\ & 230 \mathrm{~V} \mathrm{AC} \end{aligned}$	1 1	$\begin{aligned} & \text { MZ205 } \\ & \text { MZ206 } \end{aligned}$
	Over voltage release	monitors the Ph- N voltage supplied over the network. Causes automatic tripping of protection device and prevents reclosing in case of permanent over voltage Un > 280V AC. Tripping indication by red flag.	1	MZ209
	Over / low voltage release	continuously monitors voltage between Phase and Neutral to disconnect when voltage is high or low. Over voltage: >267 V AC Low voltage: 60V AC < U <170V AC	1	MZ215
MZ215	Over voltage release $3 \mathrm{Ph}+\mathrm{N}$	continuously monitors voltage between 3 Phase and Neutral to disconnect when voltage is high. Over voltage: U> 275 V AC Suitable for $3 \mathrm{Ph}+\mathrm{N}$	1	MZ216
	Locking kit (for operating knob)	allows locking of the device in the on/off position. will accept padlocks with hasps of 4.75 mm diameter max.		MZN175

Functions
Tripping and indication auxiliary contacts are common to the range of multi-pole MCBs.
They should be mounted on the left hand side of the device.
Auxiliary contact MZ201
Allows remote indication of the status of the device contacts to which it is associated.

Alarm contact MZ202
The alarm contact will provide indication if the breaker trips under fault conditions.

Shunt trip MZ2O3 - MZ204
Allows tripping of the device by feeding the coil. It is fitted with internal contacts which allows it to be fed by an impulse or latched feed. MZ 203-230V to 415V AC / 110V to 130V DC
MZ 204-24V to 48V AC /12 to 48V DC

Under voltage release MZ205-MZ206
Allows the MCBs to trip when the voltage drops or by pressing a remote off switch (i.e. emergency stop)
MZ 205-48V DC
MZ 206-230V AC

Over voltage release MZ209

The over voltage auxiliary causes remote opening of the electrical circuit by tripping the protection device, if there is an over voltage on the network.
MZ 209-230V AC

Over voltage release MZ216

The over voltage auxiliary causes remote opening of the electrical circuit by tripping the protection device, if there is an over voltage on the network. It monitors $3 \mathrm{Ph}+\mathrm{N}$ voltage and is in single module
MZ 216-3Ph+N-230V AC
Over \& Low voltage release MZ215
Continuously monitors voltage between Phase and Neutral to disconnect when votage is high or low.
MZ215-230V AC

Wiring diagram

MZ201 auxillary contact

MZ202 auxillary contact

Neutral on the right (MCB)

Mounting of auxiliaries
No tool is necessary for the mounting of the auxiliaries. The auxiliaries click onto the left side of the breakers and are held in place with special designed fixing points. The whole operation is performed within seconds.

* U< - For MZ215 release

Combination of auxiliaries with MCBs and RCBOs It is possible to combine 4 auxiliaries with miniature circuit breakers however the following must be observed:

- only one protection auxiliary is allowed
- the trip contact MZ202 must be mounted first
- all auxiliaries are left mounted

MZ203 + MZ201 + MZ201 + MZ202 + circuit breaker
MZ206 + MZ201 + MZ201 + MZ201
MZ209
MZ215

Electrical characteristics	MZ201	MZ202	MZ203	MZ204	MZ205	MZ206	MZ209	MZ215	MZ216
Contact	1NO+1NC	1NO+1NC							
Rating of contact	6 A 230V AC	6 A 230V AC							
Col voltage Un	-	-	$\begin{aligned} & 230 \text { to } 415 \text { VAC } \\ & 110 \text { to } 130 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{aligned} & 24 \text { to } 48 \text { VAC } \\ & 12 \text { to } 48 \mathrm{~V} \text { DC } \end{aligned}$	48VDC	230 VAC	230 VAC	230 VAC	$\begin{aligned} & 230 \mathrm{~V} \text { AC } \\ & 3 \mathrm{Ph}+\mathrm{N} \end{aligned}$
Energisng power	-	-	8VA	8VA	-	-	0.7VA	0.7VA	0.7VA
Voltage tolerances	-	-	-15\% of Un	-15\% of Un	-	-	$\begin{aligned} & U>267 V \\ & -290 \mathrm{VAC} \end{aligned}$	U> 267V	U> 275V
Under voltage	-	-	-	-	0.35-0.7 Un	0.35-0.7 Un	-	$\begin{aligned} & 60 \mathrm{VAC}< \\ & \mathrm{U}<170 \mathrm{VAC} \end{aligned}$	-

Description

- Provides protection against insulation faults
- Suitable for higher rated circuits

Technical data

- Conforms to IEC 60947-2 annexe B, IEC 61008, IEC 61543
- Supply voltage - 230V AC
- Sensitivity
-- Fixed - 30mA, 300mA
-- Adjustable - $30 \mathrm{~mA}, 300 \mathrm{~mA}, 500 \mathrm{~mA}, 1 \mathrm{~A}, 3 \mathrm{~A}, 10 \mathrm{~A}$
- Trip time
-- Fixed - instantaneous
-- Adjustable - $0.1,0.2,0.3,0.4,0.5,1,3 \mathrm{sec}$
- Contact rating- 16A, AC-1, 1 changeover
- Max distance between relay \& torroid - 20 meters

Features \& benefits

- Test button for simulation of fault
- Inbuilt protection against nuisance tripping like class A device
- LED for power supply indication
- Choice of fixed or adjustable trip time
- Choice of fixed or adjustable sensitivity
- Positive security - relay trips in case of break in relay \& CT link

Connection

for HR510

- rigid 1.5 to 10 sq mm
- flexible 1 to 6 sq mm
for HR500 and HR502
- rigid 1.5 to 4 sq mm
- flexible 1 to 2.5 sq mm

	Description	Characteristics	Modules	Cat. Ref.
4*	Earth leakage relays			
	standard output $1 \mathrm{C} / \mathrm{O}$	Instantaneous tripping fixed sensitivity IDn : 30mA	1	HR500
	standard output $1 \mathrm{C} / \mathrm{O}$	Instantaneous tripping fixed sensitivity IDn: 300mA	1	HR502

Earth leakage relays

standard output $1 \mathrm{C} / \mathrm{O}$
adjustable sensitivity 3
HR510
Dn: 0.03-0.1-0.3-0.5-1-3-5

- 10A
adjustable time delay :
$0-0.1-0.2-0.3-0.4-0.5-1-3 s$
Hi Type

HR510

Torroids for Earth leakage relay

Description

- Torroids suitable for HR range of earth leakage relays

Technical data

- Available in $35 \mathrm{~mm}, 70 \mathrm{~mm}, 105 \mathrm{~mm}, 140 \mathrm{~mm} \& 210 \mathrm{~mm}$ diameter
- Max length of wire between relay \& torroid - 20 meters

Mounting

- Either directly on cable or metal strip
- Or on perforated kits

Connection

- rigid - 1.5 to $4 \mathrm{~mm}^{2}$
- flexible - 1 to $6 \mathrm{~mm}^{2}$

Description	Characteristics (diameter)	Cat. Ref.
Circular section torroids	$\varnothing 35 \mathrm{~mm}$	HR741
	$\varnothing 70 \mathrm{~mm}$	HR742
	$\varnothing 105 \mathrm{~mm}$	HR743
	$\varnothing 140 \mathrm{~mm}$	HR744
	$\varnothing 210 \mathrm{~mm}$	HR745

Technical Specifications

	Non adjustable		Adjustable
	HR500	HR502	HR510
Voltage Supply	230V AC		
Frequency	$50 / 60 \mathrm{~Hz}$		
Power Consumption	5 VA		
Output	Volt free contact		
Contact Rating	1 NO (6A, 230V, AC1)		
Sensitivity $1 \Delta \mathrm{n}$	30 mA	300mA	0.03 / 0.1 / 0.3 / 0.5 / 1 / 3 / 10 A adjustable
Instantaneous/time delay	Instantaneous	Instantaneous	0-0.1-0.2-0.3-0.4-0.5-1-3 sec
Torroid withstand capacity	$5 \mathrm{kA} / 1,5 \mathrm{~s}-14 \mathrm{kA} / 1 \mathrm{~s}-100 \mathrm{kA} / 0,05 \mathrm{~s}$		
Distance between torroid and relay	20 meter maximum		
Relay cable connection - Rigid - Flexible	1.5 to 10 sq mm 1 to 6 sq mm		
Torroid cable connection - Rigid - Flexible	1.5 to 10 sq mm 1 to 6 sq mm		
Relay - Working temperature - Storage temperature	$\begin{aligned} & -25 \text { to }+70^{\circ} \mathrm{C} \\ & -10 \text { to }+55^{\circ} \mathrm{C} \end{aligned}$		
Torroid - Working temperature - Storage temperature	$\begin{aligned} & -25 \text { to }+70^{\circ} \mathrm{C} \\ & -10 \text { to }+55^{\circ} \mathrm{C} \end{aligned}$		

ELR - Wiring Diagrams

A - Wiring diagram for contactor

B- Wiring diagram for MCB + shunt

HR741, HR742, HR743, HR744, HR745
(Suitable for HR500, HR502, HR510)
Dimension details

	HR 741	HR 742	HR 743	HR 744	HR 745
A (mm)	$\varnothing 35$	$\varnothing 70$	$\varnothing 105$	$\varnothing 140$	$\varnothing 210$
B (mm)	79	110	146	196	284
C (mm)	100	130	170	220	299
D (mm)	35	52	72	97	141
E (mm)	43	57	73	98	142
F (mm)	26	32	38	48.5	69
G (mm)	48.5	66	94	123	161

All dimensions are in mm

Installation Instructions

Surge protection devices: type 1 (Class-B)
mains protection - against lightning surges

Description

- SPDs protects installation against surges
- Type - 1 SPD for protection against lightning surges

Technical data

- Conforms to IEC 61643-11, EN61643-11
- Type - 1 device (class B)
- No of poles - 1P \& 3P
- Discharge current, I max - $50 \mathrm{kA}, 100 \mathrm{kA}$
- Discharge current wave form - 10/350 micro sec
- Voltage protection level, Up < 4kV
- Response time <100 nsec

Features \& benefits

- High discharge current withstand capacity
- Robust "Spark-gap" technology for long life

Connection

- $35 \mathrm{~mm}^{2}$ flexible conductor
- $50 \mathrm{~mm}^{2}$ rigid conductor

Surge protective devices: type 2 (Class-C)
mains protection - against switching surges

Description

SPDs protects installation against surges

- Type-2 SPD for main protection against switching surges

Technical data

- Conforms to IEC 61643-11
- Type - 2 device (class C)
- No. of poles - 1P, 2P \& 4P
- Discharge current, Imax - 65kA, 40kA \& 15kA
- Discharge current waveform - 8/20 micro sec
- Voltage protection level,
$\mathrm{Up}<1.5 \mathrm{kV}$

SPN265R

SPN465R
Description

I max. 65 kA

(with reserve indicator
\& remote signalling)

I max. 40 kA

I max. 15 kA

Features \& benefits

- End of life indicator
- Aux contact for remote fault signalling
- Plug-in version for easy replacement

Connection

for terminal blocks, (L, N/E) :

- $25 \mathrm{~mm}^{2}$ flexible conductor
$35 \mathrm{~mm}^{2}$ rigid conductor
for auxiliary contact :
- $0.5 \mathrm{~mm}^{2} \mathrm{~min}$.
- $1.5 \mathrm{~mm}^{2}$ max.

P2X termina

Characteristics

Type 2 Products-Main Protection

$1 P$
SPN165R
(with reserve indicator $1 \mathrm{P}+\mathrm{N} \quad 2 \quad$ SPN265R
\& remote signalling) 4P

I max. 40 kA 1P

1P
1
$1 \mathrm{P}+\mathrm{N} \quad 2$
4 P

SPN140R
SPN265R
SPN465R

SPN240R
SPN440R

SPD140D
SPD240D
SPD440D

SPN115D SPD215D
SPD415D

Description

- Type-2 fine SPD for protection of very sensitive electronic devices
- To complements type-1 \& type-2 SPDs for maximum protection

Technical data

- Conforms to IEC 61643-11
- No of poles - 2P \& 4P
- Discharge current, I max - 8kA
- Discharge current waveform - 8/20 micro sec
- Voltage protection level, Up < 800 V (mains + fine protection)

Features \& benefits

- End of life LED indicator on front face
- Up level < 800V, offers best protection to devices on surges
- Can be used in coordination with type-1 \& type-2 SPDs

Connection

- $6 \mathrm{~mm}^{2}$ flexible conductor
- $10 \mathrm{~mm}^{2}$ rigid conductor

IP2X terminal

SPDs for telephone lines

Description

- SPDs for telephone lines
- For the protection of receiver against transient current surge vehicled by telephone lines (fax, modem, etc...)
- In-line connection on telephone line with receiver to be protected.

Technical data

- Conforms to IEC 61643-21
- Discharge current, I max - 10kA
- Discharge current waveform-8/20 micro sec

Connection :

- 0.5 to $2.5 \mathrm{~mm}^{2}$ flexible
conductor
- 0.5 to $2.5 \mathrm{~mm}^{2}$ rigid conductor

IP2X terminal

Description

- Cartridge allows simple replacement without the need to cut-off the power supply.

A keying system exists to prevent a line cartridge being interchanged by mistake with a neutral and vice versa

- Cartridges are available for all discharge currents ($65 \mathrm{kA}, 40 \mathrm{kA}, 15 \mathrm{kA}$) with or without reserve protection indication.

SPN065R

SPN065N

Replacement cartridges
for Phase :
SPN165R, SPN265R, SPN465R
SPN065R

SPN040R

SPD040D

SPD015D

SPN065N

SPNO4ON

SPD040N

Remark : for replacement of cartridges, choose the same reference as the previous cartridge

Voltage transients occur quite frequently and are caused by the switching on and off of current in the electrical distribution system, any by lightning activity in the vicinity of the installation.

Over-voltage transients caused by lighting
Lightning occurs due to a build up of an electrical charge within a cloud. Friction within the cloud caused by warm rising air and coll falling air separates electrical charges so that the positive charges go to the top of the cloud and the negative charges go to the bottom.

If we compare the situation in fig. to a capacitor it can be seen the negative charges in the cloud will attract an equal number of positive charges on the ground. When there is enough potential difference between either two cloud, or a cloud and the ground there will be a massive discharge, which will be seen as lightning.

A lightning discharge to earth will occur at the point where the lightning sees the easiest path, exactly in the same way as electrically takes the lowest resistance route within a circuit. If the ground is perfectly flat and the distribution of the negative charges in the cloud is homogenous (evenly spread), and the cloud base is of uniform height above the ground, then the chances of a discharge happening in any particular place will be equal.

However in reality any object that presents itself as an easier path to earth for the lightning is more likely to be struck. For example an average tree is about 10 meters high and contains water, this therefore reduces the distance the lightning has to travel and once struck also presents a lower resistance path to earth than the surrounding air.
(When lightning hits a tree, the current can be 100,000A plus, the resultant energy will be around, 1,000,000,000 Joules of energy and the turn the water to steam so fast, the expansion rips the tree apart)

The principle of presenting a low resistance path is the basis for lightning rods. In its most basic form a lightning a rod is a metal pole pointing into the air and situated so that its tip is higher than the structure it is there to protect. The pole is connected to the ground by copper or aluminium tape. The top of the rod is usually pointed in design, as the electric charge density on an object increases as the radius of the object decreases. This increase of electric charge per unit area can ionize the air around it which again makes it easier for the lightning to get to ground.

If a building without any form of protection from direct lightning strikes (i.e. a lightning rod), received a direct strike then no form of electronic protection will help. The magnitude of the current and potential difference involved will cause massive destruction.

If the same building is protected by a lightning rod, the actual structure is safe but the electronic equipment within it needs extra protection because of the indirect effects caused by the lightning.

Below is a summary of the mechanisms by which transient over-voltages can appear in an electrical distribution system due to lightning strikes.

If lightning directly hits a power line, it will continue to earth taking most of the current with it. A proportion however will be left on the lines and potentially cause havoc on unprotected equipment connected to these lines.

Resistive coupling

If lightning strikes the ground the current injected will want to dissipate as quickly as possible. To do this it will choose the easiest path. If this means using the earth / neutral / live conductors of a distribution system in preference to the soil it will. It will then enter the system via the earthing arrangement.

Inductive coupling

When a current flows, whether in a cable or through the air, there is an associated magnetic field set up perpendicular to the director of current. When lightning discharges either between clouds or from clouds to earth, a magnetic field can cut any conductors of the supply lines, thus inducing a voltage on it. This voltage then appears across any connected equipment.

The above principle applies for lightning striking a lightning rod. The full current passes down the lightning rod to ground, and sets up a magnetic field. As it does induces a voltage in the power and data lines running throughout the building.

Capacitive coupling

The negative charges accumulating on a cloud will induce a corresponding number of positive charges on to power lines. Once the induced voltage rises sufficiently, breakdown of insulation or destruction of devices can occur.

All four methods of transient coupling can damage equipment installed in a building.

Over-voltage transients caused by current switching
Whenever an electrical load containing components, other than purely resistive loads, is switches, there is a surge of current as the inductive and capacitive elements try to establish their steady state conditions.

An example of this is switching off fluorescent lights. The choke in the light fitting stores up energy while the lamp is running. On switch off, the energy stored in the choke tries to escape because the current that maintains it has been stopped, it does this by using the collapsing magnetic field to generate a voltage across its terminals. This voltage is dependant on the rate of change of current i.e.

V=-L di / dt
Depending on the current, the rate of change of the current, and the inductive effective of the system the voltage can rise to many times the nominal system voltage, this will appear across any devices connected to the system.

Motors, transformers and discharge lighting are common sources of transients.

It would appear that on power system the maximum transient voltage likely to be created is 6 kV , with an associated maximum transient current of 10 kA .

Risk assessment
Risk assessment for lightning strikes is the calculation necessary to decide the need for a particular level of protection. To be accurate with the assessment certain parameters need to be known such as the number of lightning strikes in the area and how exposed the installation is.

The assessment for transients is much more difficult as the switching of loads is always unpredictable, and in many instances the transient is caused by a switching action outside of the building where the problem is detected.

The cost of installing and protecting the installation correctly is extremely low compared with the damage / problems caused by the transient. When fitting a surge protective device not only should the above be considered but also the amount of disruption caused by lost of corrupt computer data, down time of process / manufacturing plant and the likelihood of danger to personnel due to equipment failure.

As you can see it is extremely difficult to accurately assess risk, so the surge protective device should be given strong consideration when designing an installation which supplies any type of electronic or sensitive equipment.

The correct selection of the device and installation method is essential when deciding the level of protection required and later we will see that the choice of surge protective device will depend upon the following :

1. The type of installation (domestic / commercial etc...)
2. The type of earthing system
3. The level of protection required

How much voltage cause equipment failure?
The European norm EN60-950 and the BS 7002, requires that equipment manufacturers test their products to susceptibility levels of 1.5 kV , this means that if a higher voltage appears across the terminals then it would most probably be severely damaged or destroyed.

All equipments that complies with these standards ensures that no significant damage will occur if a transient over-voltage of upto 1.5 kV is presented across the terminals.

How do voltage surge protectors work?

To stop large over-voltage transients appearing across equipment, we can take one of two steps.

1. Place a very high impedance in series with the equipment load
2. Place a very low impedance in parallel with the equipment load.

Varistor technology

The device which has been developed for this purpose is the voltage dependent resistor (VDR). This device can be manufactured to start opening when it sees a specific voltage and as most of the transient suppressors that we market use this method the following data will be based upon the principle.

Europe operates a broadly similar mains voltage range (230 V rms nominal), and as such all VDR's for mains protection are designed to operate around this value, allowing for any likely variations (i.e.250V) single phase. This means that at 230V we want the suppressor to be open circuit, but at any voltage greater than 250 V the device would become a short-circuit, when it enters this state it is known as its suppression mode.

Up to its maximum working voltage (250V) the VDR acts as an open circuit and above its maximum working voltage the device completely changes state and becomes a short circuit. In an ideal situation the device would have impedance and work effectively no matter how much current it passes and not break down. However in theory the VDR cannot be a perfect open circuit in one instance, and a perfect short-circuit in another; this means that there will be some leakage current through the VDR during normal operation, and some inherent resistance in the device during voltage suppression. A result of the internal resistance is that the VDR will have a maximum current limit, (before it start to heat up and melt due to $I^{2} R$ watts losses). This is known as Imax. Probably more importantly, the product of the internal impedance and the current passing
through the VDR will give a voltage drop across the device. the p.d. is one of the most important parameters for a transient suppressor and is called the 'residual voltage'.

So for the duration of the transient over-voltage, typically 10-20ms, the device operates very quickly to a short-circuit and allows current to flow to earth. This has the effect of raising the neutral voltage to the same potential as the phase conductor, therefore there is no potential difference across the load and it is not damaged.

In practice, a surge protection device may contain more than one VDR and they will be configured in various ways between live/neutral, live/earth, and neutral/earth so as to protect all earthing options.

Air Gap technology

This type of VSP uses a technology known as air gap. There is a physical gap between the positive and negative electrodes the gap and current the potential is large enough, it will jump across the gap and current flows. This technology should only be used in an installation where a lightning rod is present and forms apart of a building protection system. Because this technology is suitable for very large transients it leaves a high residual voltage across the installation. It is therefore essential to cascade this device with other VSP's to ensure full protection.

As with varistor technology air gap products are also configured in various ways between Live/Neutral, Live/Earth and Neutral/Earth so as to protect all earthing options.

Important parameters of voltage surge protectors. Below is a list and description of the important parameters that need to be understood when selecting a transient suppresser.

Nominal working voltage - Un
Must match the nominal voltage of the supply i.e. 230/400V
Maximum working voltage - Uc max
This is the voltage above which the device is going to start to change into the suppression mode i.e. in a shunt device, it will start to become a short-circuit. Uc max must always be equal to or greater than nominal supply voltage.

Nominal discharge current rating - In
This is the highest peak current at which the device will work, continue to accept subsequent transients, and still maintain its design let through voltage. For testing purposes the devices have to be able to withstand a minimum of 20 transients at In, the 20th must still maintain a let through voltage of Up. All Hager surge protection devices are tested with over 80 transients at In and still maintain their design specification.

Maximum discharge current rating - Imax
The maximum one-short current the device can withstand. Once it has seen this level of current it will need replacing.

Residual voltage - Up

In the previous section the let through voltage is defined as the voltage that is measured across the terminals of the device when its operating in suppression mode. The figure quoted, typically 1.5 kV is measured when the device has its nominal current rating in flowing through it.

The importance of Up is that the maximum potential difference that will be seen across the load as long as In is not exceeded.

From the true characteristics curves of our transient suppressors, we can ascertain the let through voltage of the device at a specified current providing we know the magnitude of the transient. (This is highly unlikely)

On some of the devices two values for Up will be stated, as there are two modes of operation, common mode and differential mode.

Common mode is the let through voltage Up between live conductors and earth.

Differential mode is the let through voltage Up between live conductors not between live conductors and earth.

The names are derived from the type of connection i.e. common mode because earth is common or relative to the transient, and differential mode because there is no common conductor, as the transient flow between live and neutral.

Note : if protection below 1.5 kV is required it is worth considering the relationship between Up and In . The residual voltage will only reach 1.5 kV when In is at its maximum. As In rarely reaches its maximum then Up will usually be less than 1.5 kV . also cascading devices can be considered to give a higher degree of protection.

Principle of operation
The principle of operation, when installed in a circuit, is that the device will act as a short-circuit and divert the excess current to earth. As has been explained it is essential to reduce the voltage appearing across the installation to 1.5 kV when a transient appears, any added inductance due to cables and connections will cause a rise in voltage across the load therefore reducing the protection to the equipment.

It is therefore very important that some basic rule are followed when installing the product to reduce inductance:

1. Shortest cable runs - always use the shortest cable runs to connect the surge protection device, this will reduce the back e.m.f.
2. Use the thickest possible cable - all cables used in alternating current circuits are subject to skin affect, (i.e. the resistance is greater in the centre of a conductor than around its circumference), therefore the larger the diameter cable the less the skin effect.
3. Use multi strand cables - also used to reduce skin effect.
4. Keep cables straight - this will ensure voltage drop, due to inductance is kept to a minimum

Test waveforms
Test waveforms are used to simulate the effects of real world transients. There are three waveforms, which enable repeat, reliable testing.

8/20 : is a current waveform used for device which conduct on short- circuit. The first value is the rise time (from 10% to 90% of peak); the second value is the duration for the test transient to decrease to hal f of its peak value.

1.2/50 : a voltage waveform used for devices which are normally open circuit i.e. spark gap arresters.
A set level of potential must be reached before sparking or flashover occurs.

10/350 : is the resultant current waveform through a spark gap arrester during a direct lightning strike.

Principle of surge protective devices
Equipment will be vulnerable if exposed to greater than 800 V . Therefore our aim is to ensure than the voltage value is maintaining at 800 V or less (this is further explained under 'cascading')

SPD's work by minimising the potential difference between circuit conductors when transient over voltages appear:
They divert transient overcurrents down to earth, thus maintaining voltage levels at reasonable values. This is achieved by connecting SPD's to earth in parallel (shunt) and/or in series.

There are three different operating principles which the hager system employs to safeguard your equipment.

Class 1
Spark gap arresters are robust devices which pass no current until the voltage across them increases to a point where flashover occurs. They can handle large amounts of energy than MOV's but leave a relatively high residual voltage of approximately 4 kV . Test waveforms 1.2/50, 10/350.

Class 2

The metal oxide varistor (MOV) is a robust and inexpensive device which can pass quite large amount of energy and leave a residual voltage of $1.2-1.5 \mathrm{kV}$ Test waveforms 8/20. If a class 1 devices is used in an installation, a class II device must be placed down stream from it to create a voltage drop across it.

All the class 2 medium devices have replaceable cartridges, and connection is bi-connect i.e. busbar can be used.

These devices are to be used in geographic sites that are exposed to indirect lightning and switching transients. Typically for commercial, rural and domestic application.

Class 3

These devices actively monitor, the AC since wave and have exceptionally fast response times (1ns). This limits the amount of let through current. They also eliminated high frequency interference which minimizes the risk of logic failures. Low to medium diverting capacity and excellent residual voltage (Imax upto 25kA, cascade residual voltage <800V).

These products are specifically designed for use in multiple tenancies.

Cascading is the term used to describe the method of combining several levels of SPD's in the one installation.

This takes advantage of the best features of each devices to make an installation highly secure. In a perfect would do the job. This theoretical device would have infinite impedance at low voltage levels, zero impedance at a set voltage and be capable of handling the biggest, direct strike, of course, no device can do this.

As a guideline, it is generally accepted that few electronic devices can withstand much more than twice the nominal voltage rating.

240 V is an RMS value $240 \times 1.414=339 \mathrm{~V}$ peak
Plus 10% supply variations $\sim 400 \mathrm{~V}$
Devices will be vulnerable if exposed to greater than 800 V .
Therefore our aim is to ensure that the voltage value is maintained at 800 V or less.

Hager recommends using a high current carrying capacity devices to divert the bulk of the transient overvoltage. In the case of the class $1 \& 2$ installation this would be either the spark gap arrester or a high current capacity MOV. The spark gap arrester will divert a surge upto 50kA leaving a residual voltage of 4 kV . The MOV's will divert a surge upto 65 kA leaving a residual voltage of $1.2-1.5 \mathrm{kV}$. These voltage levels are still too
high for our sensitive equipment so that the next step is to limit this voltage to 800 V . This is achieved with the use class 2 fine device which have a lower current carrying capacity, but will limit the voltage to 800 V .

Cascading increases the current diverting capacity of our SPD system whilst maintaining a low voltage to ensure the best protection for valuable equipment.

Main device	Imax	Residual voltage	Cascade	Final Residual device Up (L-PE)	
SPD X 15D	15 kA	1.5 kV	SPN203N	800 V	
SPD X 40D	40 kA	1.5 kV	SPN203N	800 V	
SPN X 65R	65 kA	1.5 kV	SPN203N	800 V	

Application and installation
To successfully protect a system using a surge protector, it is important that certain parameters are establish and basic rules are followed

The key parameters are :
a. shortest cable runs
b. use the thickest possible cable
c. use multi-strand cable
d. keep the cables as straight as possible

It is also essential that the type of earthing system is establish along with the number of phases to be protected so that the correct products for the system cab advised.

As you have previously seen lighting can effect the incoming conductors in many different ways. As a general consideration the surge arrester must protect between phase(s) and earth(s), neutral and earth and phase(s) and neutral.
If this is considered along with the earthing system, then the correct products can be suggested.

Parallel connections
Where connection between the main circuit and the surge protection device exceed 1 m (i.e. 50 cm for each conductor), it is essential that parallel conductors are used or cascading is considered. If parallel conductors are used then they must be bound together. If this is not done then the voltage rise due to the back emf induced the connecting cables, will appear across the load.

All parallel conductors should be bound in groups with respect to their phase i.e. if $6 \times 2.5 \mathrm{~mm}^{2}$ are required for the red, yellow, and blue phases plus neutrals, then one of each of the 3 phases and neutral conductor should be bound together.

Insulation testing
VSP's must be disconnected when performing insulation tests.
SPD standards (SPD classes)
The following are the documentations/drafts for further reference on SPD's:

IEC 61643-11 : (class 1, class 2) :
Low voltage surge protection devices - part 11:
Surge protection devices connected to low voltage power
Distribution systems - performance requirements and testing methods.
IEC 61643-12 : (class 1, class 2) :
Low voltage surge protection devices - part 12 :
Surge protective devices connected to low voltage power distribution system s- selection and applicant principles

IEC 61643-21 : low voltage surge protection devices - part 21 : Surge protective devices connected to telecommunications and signaling networks - performance requirements and testing methods

IEC 61643-22 : low voltage surge protection devices - part22 :
Surge protective devices connected to telecommunications and signaling networks - selection and application principles

In addition to above, the following national standards are followed:
France - NFC 61740/95 (class 1, class 2) : low voltage surge protection devices

Germany : VDE (class 1 - VDE B), (Class 2 - VDE C) : low voltage surge protection devices

Application of SPD's in low voltage power distribution systems.
It is important to carry out risk assessment as mentioned above to determine the need for SPD protection. Some information's necessary for correct risk assessment is as follows :

- what is the type of equipment?
- cost of the protection devices?
- what is the risk of downtime?
- is the protected equipment insured?
- is the region exposed to lightning?
- is there a lightning rod nearby the installation?

The following are the selection criteria for SPD's:

Supply network :

- what is the earthing system (TT, TN-S, TN-C, IT etc...)?
- the network characteristics (1, 2 or 3 phases, short-circuit current at point of installation)?
- The Un (nominal voltage) of the network

Equipment characteristics:

- the peak voltage Up the equipment to be protected can withstand

Geographical location:
Information on keraunic level (Nk) can be obtained from the local meteorological department.
The number of lightning flashes per square kilometer Ng can be estimated as Nk/10 or 15.
The value of Ng corresponds to a maximum probable current Lmax which may flow through the lightning arrester.

Choose SPD with the following parameters
$I_{\max }: \quad 15 \mathrm{kA}$ for $\mathrm{Ng}<1.5$
40kA for $\mathrm{Ng}>1.5$
1.1 Uo, between L \& N or between L \& PE
(for TT \& TN-S systems)
: Uo between N \& PE
(for TT \& TN-S systems)
Uo : 240V
Up : Use Up as low as possible to match equipment to be protected. If not possible use Class 2 main protection cascaded with Class 2 fine protection.

For areas exposed to lightning or installation with lightning rod :

- use class 1 products for main entry protection
- use decoupling elements if distance between the class 2 main protection and the class 1 device is less than 10 m .

Installation of SPD :

Recommended modes of protection in an installation is dependent on the earthing system of the installation. The tables below shows the possible modes of protection for various LV Systems

SPD Between	TT	TN-C	TN-S	IT
Line and neutral	x		x	x^{\star}
Line and PE	x		x	x
Line and PEN		x		
Neutral and PE	x		x	x^{\star}
Line and line	x	x	x	x

* when the neutral is distributed

TN-C system

SPD'S in TN - systems

TT System

Installation rules :

- Ensure that all loads and SPD are connected to the system Earth
- All extraneous conductive parts are bonded with shortest possible length of conductor
- The SPD should be installed at the point of entry (power supply)
- The lead lengths connecting the SPD should be as short as possible
- A protective device as per manufacturers recommendation must be installed upstream of SPD. If possible, this should be of disconnecting type to allow for easy replacement of cartridges
- Cable runs after SPD should be installed away from the cable runs into SPD to avoid pollution due to induction
- Limit the earth loop
- Ensure proper co-ordination in case of cascading

Protection against over-voltage
The protection against over voltage covering the whole network is carried out with a concept of three safety levels. The necessary measures for the realization of the protection of the installations and the devices are as per the following levels:

Level 1:
Surge protective device for protection of the main supply of the network (main protection) according to the standard IEC 61643-11, this is Type 1 Protection.

Level 2 :
Protection against over-voltages, installed in the low voltage panels/enclosures (medium protection) according to the standard IEC61643-11. This is type 2 Protection.

Level 3 :
Protection against over-voltages, close to the loads/devices (fine protection). This is generally integrated in its supply or to the distribution of low voltage.

These 3 levels are mainly characterized by the current diverting capacity of SPDs (for example of the lightning) ad by their limiting voltage across the load (residual voltage). This residual voltage must be less than Impulse withstand voltage of the parts of the installation to be protected. The levels must naturally complement each other, which implies that the surge protective devices must be uncoupled from/to each other. This decoupling causes the protection of devices of weak protection by a stronger surge protective device. The lines between the various levels act as decoupling inductivity.

Decoupling can also be carried out by inserted induction coils.

Installation of the customer

With combined surge protective device

suppliers
minimal resistance of over-voltage insulation

Installation example

Some installation rules for SPDs

- General SPD protects the whole installation by diverting the lightning current to the earth. Fitted in directly dowstream the type S differential function or delayed for system T and TN-S.
- The cable length L1 must be reduced to less than 0.5 m .
- The resistance of the earth connection must be weakest possible (approx. 10Ω) and only one is requested by installation.
- SPDs SPN 203N and SPN 403N protect very sensitive devices of class I and class II.
- A cable length of at least 1 m is requested between general and secondary SPD to ensure a minimum impedance in order to avoid the simultaneous bringing into conduction of both SPDs.
- SPDs SPN 504 and SPN 505 protect analog or digital telephone lines from very sensitive receivers.

Choice of disconnection device

The choosen device is an MCB

Selection chart for disconnection device according to the SPD type

general SPD	C1 (1)
SPN 165R SPN 265R SPN 465R	32 A curve C
SPN 240R - SPD 240D	
SPN 440R - SPD 440D	32 A curve C
SPN 215R SPN 415D SPN 115D	

(1) The breaking capacity of MCB must be choosen according to the
short-circuit intensity at the head of the installation and according to the
(1) The breaking capacity of MCB must be choosen according to the
short-circuit intensity at the head of the installation and according to the number of poles (1,2 or 4)

Distressing of SPD
Successive discharging of current due to lightning reduces progressively the performance of SPD's, with the consequence of a possible short circuit for the installation.
For this reason, all our SPDs are fitted with an automatic thermic and dynamic disconnection device
LED on front indicates the good working of the device :

- for normal version : green = OK red = replacement
- for version with reserve indicator : green = OK yellow = caution red $=$ replacement
- for version with electric LED for SPDs for fine protection green $=$ OK LED off = replacement

Warranty

Warranty can not be applied for SPDs as their life expectancy depends on the perturbation level absorbed to protect the electric installation.

SPDs with plug in cartridge
Presentation of 1 pole and multi pole SPDs : available in two versions :

- base with an auxiliary contact and cartridges with reserve indicator
- base without auxiliary contact and cartridges with end of life LED

Auxiliary contact for signalling and remote monitoring

Connection diagrams
Single pole SPDs : SPN1xx - SPD1xx protection only in common mode

IT / TN-C

Surge protective devices free from arc blower requirement of rotection Type 1
Our surge protective devices Type 1 are able to control strong impulse currents according to IEC 61024-1 without melting down. These surge protective devices correspond to standards VDE and to installation guidelines of the safety devices against the lightning and the over voltages. Surge protective devices SP120 and SP320 do not need separate
protection when the upstream fuses do not exceed 160A. If these fuses are larger, it is necessary to protect the surge protective devices with fuses 160A.

Surge protective device SP120

Surge protective device SP320

Surge protective device SP150

references	SP120	SP320	SP150 (N-PE)
standards	$\begin{aligned} & \text { EN 60099/1 } \\ & \text { IEC 61643-11 } \end{aligned}$		
construction	modular device		
number of modules	2	4	2
max. continuous operating voltage Uc	$255 \mathrm{~V} / 50 \mathrm{~Hz}$		
follow current interrupting rating if	3 kA		100 A
lightning test current limp (10/350 $\mu \mathrm{S}$)	50 kA (1 pole)	100 kA (3 poles)	50 kA (1 pole)
voltage protection level, Up	$\leq 4 \mathrm{kV}$		
maximum rating of overcurrent protection (fuse)	$160 \mathrm{~A} \mathrm{gL/gG}$		-
short-circuit withstand capacity with backup fuse	$50 \mathrm{kA} / 50 \mathrm{~Hz}$		-
protection degree	IP 20		
environment : storage temperature working temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to }+80^{\circ} \mathrm{C} \end{aligned}$		
insulation resistance	$\geq 10^{3} \mathrm{M} \Omega$		
connection	rigid 10 to $50 \mathrm{~mm}^{2}$ flexible 10 to $35 \mathrm{~mm}^{2}$		
reponse time	$\leq 100 \mathrm{~ns}$		

Technical characteristics of single pole SPDs

references	SPN 165R	SPD 140D / SPN 140R	SPD 115D
installation exposure level (risk)	very high	medium	low
installation of SPDs	in parallel	in parallel	in parallel
nominal voltage Un frenquency	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Max. continuous operating voltage Uc	275 V	275 V	275 V
voltage protection level Up	1.5 kV	1.2 kV	1.0 kV
discharge current capacity nominal current In $8 / 20 \mu \mathrm{~s}$ wave maximal current Imax	$\begin{aligned} & 20 \mathrm{kA} \\ & 65 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 15 \mathrm{kA} \\ & 40 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{kA} \\ & 15 \mathrm{kA} \end{aligned}$
degree of protection	IP 20	IP 20	IP 20
Conditional short-ciruit current Icc (with fuse or 'C curve' MCB)	20kA - 32 A	20kA - 32 A	10kA - 32 A
temperature working storage	$\begin{aligned} & -20 \text { to }+60^{\circ} \mathrm{C} \\ & -40 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20 \text { to }+60^{\circ} \mathrm{C} \\ & -40 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -20 \text { to }+60^{\circ} \mathrm{C} \\ & -40 \text { to }+70^{\circ} \mathrm{C} \end{aligned}$
end of life indicator	-	yes	yes
reserve indicator + auxiliary contact	yes	SPN 140R	-
domestic buildingcollective/individual industrial/commercial	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
earthing systems	IT, TN-C	IT, TN-C	IT, TN-C
max. connection capacity flexible (Ph, N, E) rigid	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & 35 \mathrm{~mm}^{2} \end{aligned}$	$25 \mathrm{~mm}^{2}$ $35 \mathrm{~mm}^{2}$	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & 35 \mathrm{~mm}^{2} \end{aligned}$
screw head	PZ2	PZ2	PZ2

Technical characteristics of multipole SPDs

references		SPN 265R-SPN 465R	SPN 240R, SPN 440R SPD 240D, SPD 440D	SPD 215D, SPD 415D
installation exposure level (risk)		very high	medium	low
installation of SPDs		in parallel	in parallel	in parallel
nominal voltage Un frenquency		$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Max. continuous operating voltage Uc	between Phase / Neutral between Neutre / PE	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 275 \mathrm{~V} \end{aligned}$
protection mode	common differential	yes yes	yes yes	yes yes
voltage protection level Up		1.5 kV	1.2 kV	1.0 kV
discharge current capacity 8/20 μ s wave	nominal current In maximum current Imax	$\begin{aligned} & 20 \mathrm{kA} \\ & 65 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 15 \mathrm{kA} \\ & 40 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 5 \mathrm{kA} \\ & 15 \mathrm{kA} \end{aligned}$
degree of protection		IP 20		
Conditional short-ciruit current Icc (with fuse or 'C curve' MCB)		20kA - 32 A	20kA - 32 A	10 kA - 32 A
working temperature		$-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		
end of life indicator		-	SPN 240D - SPN 440D	SPN 215D - SPN 415D
reserve indicator + auxiliary contact		SPN 265R - SPN 465R	SPN 240R - SPN 440R	-
domestic building	collective / individual industrial / commercial	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$		
earthing systems		$\begin{aligned} & \mathrm{T} \\ & \mathrm{TN}-\mathrm{S} \end{aligned}$	$\begin{aligned} & \pi \\ & T N-S \end{aligned}$	$\begin{aligned} & T \mathrm{~T} \\ & \mathrm{TN}-\mathrm{S} \end{aligned}$
connection capacity (Ph, N, E)	flexible rigid	$\begin{aligned} & 25 \mathrm{~mm}^{2} \\ & 35 \mathrm{~mm}^{2} \end{aligned}$		
screw head		PZ2		

Technical characteristics of secondary SPDs (fine protection)

references		SPN 203N	SPN 403N
installation exposure level (risk)		very high	medium
installation of SPDs		in parallel	in parallel
nominal voltage Un frequency		$\begin{aligned} & 230 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 230 / 400 \mathrm{~V} \sim \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$
Max. continuous operating voltage Uc	between N / PE between Phase and Neutral	$\begin{aligned} & 255 \mathrm{~V} \\ & 255 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 255 \mathrm{~V} \\ & 255 \mathrm{~V} \end{aligned}$
protection mode	common differential	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
voltage protection level Up		1.25 kV	1.kV
discharge current capacity 8/20 μ s wave	nominal current In maximal current Imax	$\begin{aligned} & 3 \mathrm{kA} \\ & 8 \mathrm{kA} \end{aligned}$	$\begin{aligned} & 2 \mathrm{kA} \\ & 8 \mathrm{kA} \end{aligned}$
degree of protection		IP 20	IP 20
conditional short-ciruit current Icc (with fuse or associated MCB)		6 kA - 16 A	6kA - 32 A
temperature	working storage	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \end{aligned}$
well functioning indicator		green LED	green LED
domestic buildings	collective / individual industrial / commercial	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \text { yes } \\ & \text { yes } \end{aligned}$
earthing systems		TT/TN System only	TT/TN System only
connection capacity (Ph, N, E)	flexible min./mix. rigid min./mix.	$\begin{aligned} & 2.5 / 6 \mathrm{~mm}^{2} \\ & 6 / 10 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 2.5 / 6 \mathrm{~mm}^{2} \\ & 6 / 10 \mathrm{~mm}^{2} \end{aligned}$
screw head		PZ1	PZ1

SPDs SPN 203N and SPN 403N

Technical characteristics of secondary SPDs for telephone line

references	SPN 504	SPN 505
surge protective device	digital line (Numeris, RNIS, ISDN...)	analog line
installation of SPDs	in series	in series
ingress protection	IP 10	IP 10
tension nominale Un	$5 \mathrm{~V} / 40 \mathrm{~V}$	130 V
maximum continous operating voltage Uc	7.5 V / 60 V	170 V
voltage protection level Up	600 V	600 V
voltage protection level $\quad \begin{aligned} & \text { common mode } \\ & \text { differential mode }\end{aligned}$	yes yes	yes yes
series impedance	1.0	4.7
$\begin{array}{ll}\text { discharge current wave } & \text { In (total) } \\ & \text { In (line) }\end{array}$	10 kA 5 kA	5 kA / 10 kA (RJ 45 / screw) 2.5 / 5 kA (RJ 45 / screw)
working temperature	$-40^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}+60^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { connection } & \text { in } \\ \text { out }\end{array}$	screw screw / RJ 45	screw / RJ 45 screw / RJ 45
connection capacity flexible min./max. $(\mathrm{Ph}, \mathrm{N}, \mathrm{T})$ rigid $\mathrm{min} . / \mathrm{max}$.	$\begin{aligned} & 0.08 \mathrm{~mm}^{2} \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$	$\begin{aligned} & 0.08 \mathrm{~mm}^{2} \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$
applications	digital line, ISDN, RNIS	analog line

Electrical connection

SPN 504

SPN 505

Description
Protection and control of circuits against overloads and short circuits.

Technical data

- sizes: L38, L5
- poles:1P, 2P
- voltage rating : $500 \mathrm{~V} \mathrm{AC}, 690 \mathrm{~V} \mathrm{AC}$
- current rating : 32 to 50A
- frequency: $50 / 60 \mathrm{~Hz}$
- climate sealed: T2
- will accept accessories
- short circuit resistance with fuse link $10,3 \times 38 \mathrm{~mm}$:

80kA - 690V~/
$120 \mathrm{kA}-500 \mathrm{~V}$

Connection capacity

- L38 (10x38) :
rigid conductors: $25 \mathrm{~mm}^{2}$
flexible conductors: $16 \mathrm{~mm}^{2}$
- L51 (14x51):
rigid conductors : $35 \mathrm{~mm}^{2}$
flexible conductors: $25 \mathrm{~mm}^{2}$
Comply with IEC 60 269-2, IEC 60 269-2-1 and IEC 60 947-3

690V-32A

Withstand current correction table

A - depending on ambient temperature,
\mathbf{B} - depending on the proximity heating effect of the fuse carriers themselves when fully loaded and mounted together in groups.

type fuse size	L38	L51
In for Un 400 V	32 A	50 A
In for Un 500 V	20 A	40 A
A	20°	1
	30°	0,95
	40°	0,90
	50°	0,80
	$1-3 \mathrm{Ph}$	1
	$4-6 \mathrm{Ph}$	0,8
	$7-9 \mathrm{Ph}$	0,7
	$>10 \mathrm{Ph}$	0,6

Microswitches functions

- Fuse melting : a fuse-carrier containing a fuse-link with a striker that sends out a signal when the fuse element melts
- Pre-cut : when the fuse-carrier opens
- Presence : sends a signal when the fuse-carrier is closed with no fuse in it

Signal light

Mounting on L 51

Padlocking and sealing

LS51 in "open" position

Microswitch

mounting on L51, single pole or multi pole

Application

Padlocking and sealing of the others fuse carriers in "open" position

HRC cartridge fuses

Description

Cylindrical gG fuse-links are intended for industrial applications.
gG protection for general purpose applications against overload and short-circuits.

Sizes:

L 38 : 10×38
L51: 14×51
Comply with IEC 60 269-1 and 60 269-2

Cartridge fuses	500 V AC	0.5 A	LF300G
type gG		1 A	LF301G
$10 \times 38 \mathrm{~mm}$	2 A	LF302G	
breaking capacity: 120 kA	4 A	LF304G	
		6 A	LF306G
	8 A	LF308G	
	10 A	LF310G	
	12 A	LF312G	
	16 A	LF316G	
	20 A	LF320G	
	25 A	LF325G	
	400 V AC	32 A	LF332G

Cartridge fuses	690 V AC	2 A	LF402G
type gG		4 A	LF404G
$14 \times 51 \mathrm{~mm}$	6 A	LF406G	
breaking capacity:	8 A	LF408G	
2 to $25 \mathrm{~A}: 80 \mathrm{kA}$	10 A	LF410G	
32 to $50 \mathrm{~A}: 120 \mathrm{kA}$	12 A	LF412G	
		16 A	LF416G
		20 A	LF420G
	500 V AC	25 A	LF425G
		32 A	
		40 A	LF432G
		45 A	LF440G
		50 A	LF445G

HRC fuse carriers gG type

Cartridge fuses - gG type

Cut-off characteristics current limitation

Rated power dissipation (W)

In (A)	size 10×38	size 14×51	size 22×58
0,5	1,43	-	-
1	2,77	3,90	-
2	0,60	0,90	1,00
4	0,70	1,00	1,10
6	0,85	1,15	1,30
8	0,75	1,00	1,10
10	1,00	1,30	1,50
12	1,30	1,70	1,80
16	1,60	2,00	2,10
20	2,00	2,50	2,70
25	2,60	3,30	3,30
32	2,90	3,50	3,50
40	-	4,75	4,00
45	-	4,80	-
50	-	4,80	5,50
63	-	-	6,90
80	-	-	7,80
100	-	-	9,00
125	-	-	11,4

vector IP65 enclosures

vector range of weather proof enclosures answer the needs of electrical distribution in dust and moisture prone environment. Equipped with special door gasket, they maintain high ingress protection (IP65) level of enclosure to protect modular devices mounted inside.

The vector range for outdoor use

the outdoor vector range has been developed to endure bad weather for a long period of time. The mechanical properties of the material used in their manufacture make it possible to install them in most locations. Designed to resist bad weather, humidity, dust, chemical aggressions and ultraviolet radiation exposure.

Advantages for you:

- Space from 2 to 54 modules
- Ease of installation :
-- DIN rail adjustable in depth
-- Accessories for installing enclosure in specific outdoor locations like for example masts
- The characteristics and aspects of the material remain unchanged over the years and perfectly resist to chemical attacks and ultra violet exposure
- Accessories to guarantee optimal IP65 protection grade

Technical data:

- Enclosure made of high grade insulating material, selfextinguishing, class II IP65 VE103-110, IK07 / VE112 - 318, IK08
- Glow wire test $850^{\circ} \mathrm{C}$ acc. IEC 695.2.1
- Material : polycarbonate, excellent resistance to a large variety of chemical substances (saline, acid, hydrocarbons, alcohols...) and ultraviolet radiation.
- Compliant with the REACH and RoHS recommendations
- Compliance to EN60439-3 standard - CE certificate

Expert tips

01
Enclosures for outdoor applications. Resistance to ultraviolet radiation, immersion in water in accordance with UL746C

02
Excellent behavior in tough environments. Usage in a wide scope of temperatures. Dimensional stability up to $130^{\circ} \mathrm{C}$. Resistance to frost up to $-25^{\circ} \mathrm{C}$ (IKO7 acc. to EN 60439 below $-5^{\circ} \mathrm{C}$)

06

Adjustable DIN rails to fit products of different depth, provided with quick fixing chassis

03

No condensation inside the enclosure. Special ventilated cable glands to drain water from condensation. Guarantees an IP65 protection grade

07
Gone through rigorous test Glow wire test, temperature test at $-25^{\circ} \mathrm{C}$, IK impact test, dust proof, "Yellow card" ultraviolet radiation resistance, chemical resistance.. Product environment profile.

Quick and easy installation in difficult places. Fixing brackets for wall mounting and plates for fitting on masts for example in photovoltaic installations

REACh \checkmark

08
Compliance to environmental recommendations REACH and RoHS. No use of substances listed as hazardous by the ECHA (European Chemical Agency)

Surface mounting enclosures with transparent doors
1 to 4 rows from 2 to 48
1 to 3 rows from 18 to 54
Adjustable DIN rail for shoulder measurement 47 and 63 mm , transparent hinged cover (2 to 10) or door (12 to 54),
2 lateral knock outs for cable entry or coupling pieces.
Premarked knock outs for bushes or cable glands M20, M25, M32 and M40 on PN version;
polycarbonate UV resistant outdoor use UL746C,
colour : light grey RAL 7035
for equipment up to 63A isolation voltage 1000 V DC
class II
IEC 60 439-3
Installation: $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

IEC 60 695-2-10 and 60 $695-2-11: 850^{\circ} \mathrm{C}$

Cat. ref. with premarked knock-outs

-	Designation		Cat. Ref. with premarked knock-outs
	Enclosures 3 to 10 modules 1 row, 2 + 1	w. $111 \times \mathrm{h} .175 \mathrm{xd}$.	VE103PN
VE106PN	1 row, $4+2$	w. $165 \times \mathrm{h} .190 \mathrm{xd}$.	VE106PN
	1 row, $8+2$	w. $237 \times$ h. $210 \times$ d. 114 mm	VE110PN
	Enclosures 12 modules 1 row, 12	w. $310 \times \mathrm{h} .302 \mathrm{xd}$.	VE112PN
	2 row, 24	w. $310 \times \mathrm{h} .427 \times$ d. 151 mm	VE212PN
	3 row, 36	w. $310 \times \mathrm{h} .552 \times \mathrm{d} .151 \mathrm{~mm}$	VE312PN
VE312PN			
	4 row, 48	w. $310 \times \mathrm{h} .677 \times$ d. 151 mm	VE412PN
	Enclosures 18 modules 1 row, 18	w. $418 \times \mathrm{h} .302 \times \mathrm{d} .151 \mathrm{~mm}$	VE118PN
	2 row, 36	w. $418 \times \mathrm{h} .452 \times \mathrm{d} .151 \mathrm{~mm}$	VE218PN
VE218PN	3 row, 54	w. $418 \times \mathrm{h} .602 \times \mathrm{d} .151 \mathrm{~mm}$	VE318PN

Designation		Cat. Ref.
Cable glands	M 16	VZ016M
	M 20	VZ020M
	M 25	VZ025M
	M 32	VZ032M
	M 40	VZ040M
Ventilated cable glands	M 20	VZO20D
	M 25	VZ025D
	M 32	VZ032D
Photovoltaic DIN rail terminal	$10 \mathrm{~mm}^{2}$	KNX10LH
	1000 V AC/DC	KW10LH
Closing plate	for KXN10LH	

Photovoltaic fuse carriers, SPD and switch disconnectors

Photovoltaic fuse carriers and fuses

DC protection of photovoltaic strings against overload and short-circuits

Technical data

- sizes : L38 (10x38)
- class of operation : gPV (PV fuse)
- poles : 1P, 2P
- voltage rating : 1000V DC for fuse carriers and 900V DC for fuses
- fuse carriers current rating : 32A
- fuses current rating : 2 to 20A
- breaking capacity : 30kA
- minimum Interrupting : $2 x \ln (2-3-4 A), 1.9 x \ln (6-8-10-12 A), 1.6 x \ln (16-$ 20A)

Connection capacity

rigid conductors: $16 \mathrm{~mm}^{2}$ flexible conductors : $10 \mathrm{~mm}^{2}$

Comply with IEC 60269-2, IEC 60269-2-1 and IEC 60947-3

Switch disconnectors

Designed for photovoltaic applications but fully compatible to any DC purposes.Contact making and break independent to operator speed.

Technical data

- poles : 4P
- voltage rating: 1000V DC 21B
- current rating : 32A

Connection capacity
rigid conductors : $16 \mathrm{~mm}^{2}$
flexible conductors : $10 \mathrm{~mm}^{2}$
Comply IEC 60 947-3

Cartridge for photovoltaic
SPDs
photovoltaic Ucpv ≤ 1000 V DC
polarized +/- for SPV325
SPV025
$\begin{array}{ll}\text { Double pole polarized } & 25 \mathrm{kA}, 4 \mathrm{kV} \text {, class } 2 \\ \text { surge protection devices } & \text { with end of life indic }\end{array}$
surge protection devices with end of life indicator
photovoltaic Ucpv 1000V DC
SPV325
SB432PV
earth for SPV325 SPV025E

SPV025

Control \& Signaling

power interface efficient control of electricity

Hager offers control and signaling products to achieve safe \& efficient control of electricity within domestic, commercial and industrial applications. Hager contactors compliments our control and protection devices. They are commonly used for remote switching of electrical circuits for lighting, pumps, HVAC and building automation systems.

Indicator lights	Page
Push buttons	254
Analogue voltmeters	254
Analogue ammeters	256
Selector switches	256
Current transformers	256
Bells \& Buzzers	259
Modular contactors	260
Latching relays	263

SVN indicators

LED indicators for status indication in electrical networks

Advantages for you:

- LED technology for maintainance free long life
- Low power consumption
- Superior asthetics
- Special 3 in 1 indicators

Technical data:

- Conforms to IEC 60947-1 and IEC 62094-1
- LED technology
- Supply voltage - 230/415V AC
- Power consumption - 0.8 watts
- Burning hours - upto 100,000 hours

Expert tips

01
Compact in size \& highly functional

- saves space
- value for money
- superior aesthetics

02
Latest LED technology

- long life, upto 100,000 hours
- low power consumption

03
Front product labeling

- for easy circuit identification

04
Special 3 in 1 indicators

- RYB phase indicator in one module
- On-Off-Trip (RGO) in one module

Indicator lights

- Modular LED indicators for visual indication of circuit status

Modular push buttons for remote actuation of loads

Technical data-Indicator lights

- Conforms to IEC 62094-1
- Available in Red, Orange, Green \& Blue color
- Triple indicators for RYB \& ON-OFF-trip (RGO) in single module
- Long life of 100,000 burning hours
- True color LEDs with very long
life
- 2 in 1 indicator for ON-OFF or main-back up supply

Features \& benefits

- Modular design, fits on 35 mm DIN channel
- Very low power consumption
- LED technology, long life, maintenance free

Superior aesthetics with true colors LEDs

- RYB \& On-Off-Trip indicators in one module, saves space \& cost

Connection

- 10sq mm rigid cable
- 6sq mm flexible cable

IP2X terminal

Technical data-Push buttons

- Conforms to

IEC 60947 part 5-1

- Range - $1 \mathrm{NO}, 2 \mathrm{NO}, 1 \mathrm{NO}+1 \mathrm{NC}$ without indicator
$1 \mathrm{NO} \& 2 \mathrm{NO}$ with green
indicator

| Description | Characteristics | Modules | Cat. Ref. |
| :--- | :--- | :--- | :--- | :--- |
| Single Indicator light | | | |
| | green | 1 | SVN121 |
| | red | 1 | SVN122 |
| | orange | 1 | SVN123 |
| | blue | 1 | SVN124 |

$\mathbf{2}$ in $\mathbf{1}$ Indicator light \quad red+green $\quad 1 \quad$ SVN126

3 in 1 Indicator light

red+green+orange	1	SVN129
red+orange+blue $(R Y B)$	1	SVN222

Latching Push buttons

16 A - 230 V~

contact: 1 NO	1	SVN312
contacts: 2 NO	1	SVN332
contacts: $1 \mathrm{NO}+1 \mathrm{NC}$	1	SVN352

SVN332

Electrical and mechanical characteristics

General features

Part number	SVN1...	SVN4...	SVN3...
Designation	Indicator lights	Indicator lig	Push buttons
		+ Push but	
		Indicator lig	
Standard	IEC62094-1		IEC60947-5-1
Light technology	LED light		
Electrical characteristics			
Rated insulation voltage		250 V	
Rated impulse withstand voltage	4 kV (2kV for 12-48V version)		4 kV
Operational voltage	230VAC		
Frequency	50 Hz		
Operational thermal current	n/a		16A
Operational current @230V AC12	n/a		16A
Operational current @230V AC14	n/a		10A
LED power	0.8W (230V), 0.33W (48V), 0.8W (24V)		
LED consumption	3.45 mA (230V), $6.9 \mathrm{~mA}(48 \mathrm{~V}), 3.3 \mathrm{~mA}$		9.7 mA (48VDC), 4.6mA (24VDC),
	(24V)		2.1 mA (12VDC)
Conditional short-circuit current	n/a		1000A with gl 10A fuse
IP class	IP2X		
Degree of pollution	3		
Connection			
Type of connection	Cage terminals		
Connection capacity with flexible cable	$0.75 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$		
Connction capacity with rigid cable	$0.75 \mathrm{~m}^{2}$ to $10 \mathrm{~m}^{2}$		
Terminal tightening torque	Mini : 1.3 Nm ; Max 2 Nm : advised 1.65 Nm rigid and 1.8 Nm		
Case material	Thermoplastic (Polyamide) comply with IEC 695-2-1		
Mechanical characteristics			
Electric endurance in number of cycles	n/a		15000 (AC12); 6000 (AC14)
Mechanical endurance in no. of operations	n/a		15000
Life time	100000h		
Operating temperature	-20 to $+50^{\circ} \mathrm{C}$		
Storage temperature	-40 to $+80^{\circ} \mathrm{C}$		
Protection index IP	20		
Height	2000m		
Installation			
Mounting	DIN rail EN50022-35		
Mounting position	Performance not affected if installed vertically, horizontally or flat		

Description

Analog ammeter for current measurement

- Analog voltmeter for voltage measurement
- Selector switches - ASS \& VSS
- Current transformers for CT operated ammeters

Technical data

- Conforms to IEC 60947-3
- Ammeter direct reading -

0-30A

- Ammeter CT operated upto 250A
- Voltmeters - 0-500V AC
- Voltmeter accuracy - 1.5\%
- ASS - 4 positions with off
- VSS - 7 positions with off
- CT - 50/5, 100/5, 150/5, 250/5

Features \& benefits

Modular device for measurement of current / voltage

- Fits on 35 mm DIN channel

Selector switches
For ammeter and voltmeter or for circuit selection.

Connection

1.5 to 10sq mm rigid conductor

1 to 6 sq mm flexible conductor

Analogue voltmeter and ammeter

Technical specifications

Electrical characteristics

- direct reading voltmeter : 500V for $50 / 60 \mathrm{~Hz}$
- direct reading ammeter : 30A
- ammeter with CT : CT/5A
- consumption : voltmeter <3VA/ammeter <1.1VA
- isolating voltage : 2 kV

Environment

- working $\mathrm{T}^{\circ}: 23^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ accuracy 1.5%
- working T° : $-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ accuracy 1.5%
- storage T° : $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Connection capacity

- flexible : 1 to $6 \mathrm{~mm}^{2}$
- rigid : 1.5 to $10 \mathrm{~mm}^{2}$

Voltmeters range

cat. ref.	scale	reading
SM 500	$0-500 \mathrm{~V}$	direct

Ammeters range

cat. ref.	scale	reading
SM 030	$0-30 \mathrm{~A}$	direct
SM 050	$0-50 \mathrm{~A}$	via CT/5A
SM 100	$0-100 \mathrm{~A}$	via CT/5A
SM 150	$0-150 \mathrm{~A}$	via CT/5A
SM 250	$0-250 \mathrm{~A}$	via CT/5A

Electrical connection

Electrical characteristics

- Standard: EN/IEC60044-1
- Primary rated current: 50 A - 250 A
- current rating: 120 \%
- Rated short time thermal current: Ith $=60 \times \ln (\max 50 \mathrm{kA})$
- Rated dynamic current: Idyn $=2,5 \times \operatorname{lth}(\max 120 \mathrm{kA})$

Permissible ambient temperature: $-40^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$

- Class of insulation in accordance with IEC 60085: E
- Degree of protection DIN/EN 60529 / VDE 0470 T1: IP 20
- Recommended tightening torque secondary terminals: 1,5-2 Nm
- Instrument security factor (FS): FS 5
- Rated continuous thermal current: 1,2 x In
- Rated secondary current: 5 A
- Rated frequency: 50-60 Hz
- Highest voltage for equipment Um: 720 V
- Rated power-frequency withstand voltage (r.m.s.): 3 kV

Current transformers

Reference	SRA00505	SRA01005	SRA01505	SRA02005	SRA02505
Bus bars	20x10mm, $15 \times 15 \mathrm{~mm}$, ф 20 mm	$30 \times 10 \mathrm{~mm}, 25 \times 15 \mathrm{~mm}, 20 \times 20 \mathrm{~mm}$			
Primary Current	50A	100A	150A	200A	250A
Secondary Current	5A	5A			
Dimensions	$78 \times 60 \times 30 \mathrm{~mm}$	$70 \times 49.5 \times 30 \mathrm{~mm}$			
Accuracy Class	1			1	
Burden	1.5VA	2.5 VA			

Range of all CT's

SRA00505

SRA01005 / SRA01505 / SRA02005 / SRA02505

Description

To provide an audio alarm

Technical data

- Rating - 230 V AC
- Consumption - 6.5 VA
- Bells - 85 db
- Buzzers - 78 db

Features \& benefits

- Compact device, only 1
module (17.5 mm)
- Can be used to signal events like switching "ON", "OFF" and "Tripping" of device
- Fits on 35 mm DIN channel

Connection

6 sq mm rigid cable
4 sq mm flexible cable

Description

- For remote switching of power \& control circuits

Technical data

- Rating - 25A, 40A \& 63A
- No of poles - $2 \mathrm{NO}, 1 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}, 3 \mathrm{NO}, 3 \mathrm{NO}+1 \mathrm{NC}, 4 \mathrm{NO}$
- Utilization category - AC 7A (for resistive loads)
- Coil voltage - 230V AC, 50 Hz

Features \& benefits

- Compact modular design
- Fits on 35 mm DIN channel
- Ideal for use with time
switches, twilight switches \& PIRs
- Day \& night contactors with manual override switch
- Low power consumption

Options

Contact choice

- normally open (NO)
- normally closed (NC)

Auxiliary contact

Auxiliary available for $1 \mathrm{NO}+1 \mathrm{NC}$ for complete range

Coil	Rating	Modules	Cat. Ref
voltage	AC 7A		

$230 \mathrm{~V}-50 \mathrm{~Hz} \quad 25 \mathrm{~A} \quad 1 \quad$ ESC225

2NO
 $\square_{1}^{-1}-A^{d}$

$230 \mathrm{~V}-50 \mathrm{~Hz}$

$25 A$	1
$40 A$	3
$63 A$	3

ESC240
ESC263

	$230 \mathrm{~V}-50 \mathrm{~Hz}$	25 A	1

$230 \mathrm{~V}-50 \mathrm{~Hz}$	40 A	3	ESC442
	63 A	3	ESC465

$230 \mathrm{~V}-50 \mathrm{~Hz}$	40 A	3	ESC340
	63 A	3	ESC363

-

$230 \mathrm{~V}-50 \mathrm{~Hz} 40 \mathrm{~A} \quad 3 \quad$ ESC443

ESC466

$230 \mathrm{~V}-50 \mathrm{~Hz}$	25 A	3	ESC425
	40 A	3	ESC440
	$63 A$	3	ESC463

$230 \mathrm{~V}-50 \mathrm{~Hz}$	40 A	3	ETC440
	63 A	3	ETC463

Night \& day
contactor

Auxiliary contact

2A
1/2
ESC080

ETC463

${ }_{14}^{13} \mid 4_{12}^{11}$

Choice of contactors

The choice of contactor is based on many factors:

- type of the load supplied,
- nominal current of the load,
- operating voltage,
- number of operations, etc.

The contactors are AC7-a (resistive load) and AC7-b (inductive load) approved

Heating applications

The choice of the contactor is based on the electrical heating load, and the targeted life time.

Single phase

Three phase supply

Number of operations			60,000	100,000	150,000	300,000	600,000
Maximum load* in kW	230 V	16A	3.0	2.5	1.9	0.8	0.7
		25A	4.6	4.0	3.0	1.3	1.0
		40A	7.3	6.3	4.7	2.2	1.6
		63A	11.6	10.0	7.5	3.5	2.5
	400 V	16A	8.9	8.0	5.8	2.8	2.0
		25A	13.8	12.0	8.6	4.3	3.0
		40A	22.0	18.5	14.3	6.3	5.0
		63A	35.0	30.0	22.6	10.2	7.6

* On three phase configuration the maximum load per phase corresponds to the values states divided by 3.

Example:

Function of a heating installation 200 days/annum, 75 operations
per day (1 opening +1 closing $=2$ operations)
Mechanical life $=10$ years
Total number of operations: $200 \times 75 \times 10=150,000$
in that case, depending on the type of circuit, select a contactor 40A 230 V to control a load of 4.7 kW , or a contactor 16A 400 V to control a load up to 5.8 kW .

Motor applications (AC7-b equivalent to AC3)

Single phase 230 V

Three phase 400V

	Contactor rating	Control diagram	
		2P 230V single phase	3P 400V three phase
Maximum power for the motor	16 A	0.57 kW	1.7 kW
	25 A	0.88 kW	2.65 kW
	40 A	2.6 kW	7.8 kW
	63 A	3.3 kW	10 kW

Influence of working temperature

Derating factor between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}: 0.9$
Example: heating with convector
The maximum load of ESC225 is 4.6 kW for 60,000 operations and for a temperature $<40^{\circ} \mathrm{C}$.
between $40^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$, the load is 4.6×0.9 i.e. 4.14 kW

Adjacent fitting:

It is necessary to put a heat dissipation insert (reference LZO60) between each 3 products, or each humfree contact.

Description

- Operates loads on impulse signal

Technical data

- Rating - 16A
- No of poles - $1 \mathrm{NO}, 2 \mathrm{NO}, 1 \mathrm{NO}+1 \mathrm{NC}, 4 \mathrm{NO}, 2 \mathrm{NO}+2 \mathrm{NC}$
- Utilization category - AC 1 (for resistive loads)
- Coil voltage - 230 V AC, 50 Hz

Features \& benefits

- Used for controlling loads with multiple control points for ex-warehouse or long corridors
- Very useful for application like staircase light management
- Can be used in hotel rooms for controlling lights from multiple points

Connection

10 sq. mm. flexibles
6 sq. mm. rigid

Technical characteristics

	EPN510 EPN515 EPN520	$\begin{aligned} & \text { EPN525 } \\ & \text { EPN240 } \end{aligned}$
Coil in AC		
voltage rating	230 V	230 V
tolerance	+10/-20\%	+10/-20\%
frequency	50/60Hz	$50 / 60 \mathrm{~Hz}$
start consumption	25VA	55VA
Coil in DC		
voltage rating	110 V	110 V
tolerance	+10/-20\%	+10/-20\%
start consumption	12VA	25w
Contacts		
max. perm. Current AC1	16A	16A
voltage	250 V AC	250 V AC
electrical endurance	150000 operations	150000 operations
mechanical endurance	500000 operations	500000 operations
ohmic loss per current path	1.2 W	1.2 W
minimum duration of impulse	50 ms	50 ms
maximum time under voltage	1 H	1 H
push button with signal lamp without condensator	6 (1mA / lamp)	6 (1mA / lamp)
push button with signal lamp with condensator $=1 \mathrm{uF}$ parrallel *	10 (1mA / lamp)	10 (1mA / lamp)
push button with signal lamp with condensator $=2.2 \mathrm{uF}$ parrallel *	44 (1mA / lamp)	44 (1mA / lamp)
ingress protection	IP20	IP20
working temperature	-5 to $+40^{\circ} \mathrm{C}$	-5 to $+40^{\circ} \mathrm{C}$
storage temperature	-40 to $80^{\circ} \mathrm{C}$	-40 to $80^{\circ} \mathrm{C}$
Connection		
flexible	6 mm 2	6 mm 2
rigid	10 mm 2	10 mm 2

Technical characteristics

The following table shows the number of lamps which can be connected per phase at 230 V 50 Hz .

Incandescent lamps 230V lamps with and without halogen									
load:	40W	60W	75W	100W	150W	200W	300W	500W	1000W
number :	45	30	24	18	12	9	5	3	2
Low voltage halogen									
load :	20W	50W	75W	100W	150W	300W			
number :	70	28	19	14	9	3			
Fluorescent lamps uncompensated									
load:	15W	18W	30W	36W	58W				
number:	29	25	25	24	14				
Parrallel compensation									
load:	15W	18W	30W	36W	58W				
number :	27	27	25	25	16				
C total max(a) :	$121 \mu \mathrm{~F}$	$121 \mu \mathrm{~F}$	$112 \mu \mathrm{~F}$	$112 \mu \mathrm{~F}$	$72 \mu \mathrm{~F}$				
Two lamp circuit, series compensation									
load:	2x18W	2x20W	2x36W	2x40W	2x58W	2x65W			
number :	40	40	22	22	12	12			
C :	2.7رF	$2.7 \mu \mathrm{~F}$	$3.4 \mu \mathrm{~F}$	$3.4 \mu \mathrm{~F}$	5.3 F	$5.3 \mu \mathrm{~F}$			
load :	18W	36W	58W						
number :	30	28	15						
Two lamp circuit with electronics power supply units									
load:	2x18W	2x36W	2x58W						
number :	15	13	8						
Fluo compact uncompensated									
load:	7W	10W	18W	26W					
number :	50	45	40	25					
Fluo compact electronic power supply unit									
load:	11W	15W	20W	23W					
number:	80	60	50	40					
High intensity discharge metal halogen lamps, uncompensated									
load:	50W	80W	125W	250W	400W				
number :	11	9	7	3	2				
Metal halogen lamps,									
parrallel compensation									
load:	50W	80W	125W	250W	400W				
number :	9	8	6	3	2				
C total max(a) :	63 $\mu \mathrm{F}$	$58 \mu \mathrm{~F}$	60 $\mu \mathrm{F}$	54 ${ }^{\text {F }}$	50رF				
High pressure sodium vapour lamps, uncompensated									
load:	70W	150W	250W	400W					
number:	9	5	3	2					
High pressure sodium vapour lamps, parrallel compensated									
load:	70W	150W	250W	400W					
number :	5	3	2	1					
C total max(a) :	60رF	54 $\mu \mathrm{F}$	64 ${ }^{\text {F }}$	50رF					

(a) : these values must not be exceeded

Auxiliaries for centralised control

The EPN 050 allows the centralised control of several light sources which can be turned on or off simultaneously. The separate switching by pushing the pushbuttons, which are connected with the latching relay, remains possible.

The EPN 052 allows an overall central control of individual central on/off EPN 050

Auxiliary contact

A remote signalling can be realised with the auxiliary contact EPN 051 .

Auxiliary for control by maintained contac

When control devices with permanent impulse are externally driven, e.g. time switches or limit switches, an impulse control directly to the latching relay's coil is possible with the auxiliary contact EPN 053.

Connection latching relay + auxiliary

Several auxiliaries can be
combined with the latching relay.

Connection

10 sq. mm - rigid cables
6 sq. mm - flexible cables

Auxiliary contact
2 A - 230 V AC
$1 / 2$
EPN05
${ }_{22}^{21}(-)_{24}^{23}$

EPN 051

Auxiliary for

24 to 230V AC
1/2
EPN052
multi levelled
centralised control

EPN 052

Auxiliary for
1/2
EPN053
control by
maintained contact

EPN 053

Auxiliaries for latching relays

	EPN050	EPN051	EPN052	EPN053
	(a)	-		
	24 to 230V AC			
	12 to 110V DC			
nominal load	-	2A/250V AC	-	
Imin/230V AC	-	15 mA	-	
working temperature	-5 to $+40^{\circ} \mathrm{C}$			
storage temperature	-40 to $+80^{\circ} \mathrm{C}$			
Connections : flexible	$6 \mathrm{~mm}^{2}$			
rigid				

(a) : according to a latching relay connected with an auxiliary

Application diagram
centralised command (EPNO50 - EPN052)

Remote signalling (EPNO51)

Installation of the auxiliaries

Maintained command (EPNO53)

Energy and lighting

Innovative solutions for efficient use of energy

Hager offers innovative solutions for efficient use of available resources to keep energy consumption at lowest with higher control, comfort and convenience to users. Hager's lighting control devices are totally unique and provides real benefits to end users.

Analogue time switches	Page
Digital time switches	270
Astronomical time switches	272
Twilight switches	274
Movement detectors	276
Presence detectors	282
Movement detectors - IP55	294
LED Floodlight	296
Dimergers meters	304

Analogue time switches

Description

- Time switches improve comfort by switching loads automatically as per real time
- Helps in saving energy

Applications

- Residential, commercial \& industrial premises
- To control lighting, heating
- Household appliances

Shop windows

Technical data

- Conforms to IEC 60730
- Programming by captive segments
- Manual override function:

For EH011:
-- automatic
-- permanent ON
For EH111:
-- automatic
-- permanent ON
-- permanent OFF
For EH711
-- automatic
-- permanent ON
-- permanent OFF

For EH771
-- automatic
-- permanent ON
-- permanent OFF
Minimum switching time

- 15 min for daily version din rail mounted
- 20 min for daily version wall mounted
- 2 Hour for weekly version wall mounted

Operating voltage :

- 230V ~ 50 Hz

Connection :

- 1 to $4 \mathrm{~mm}^{2}$ for 1 M
- 1 to $6 \mathrm{~mm}^{2}$ for 3 M

Features \& benefits

Battery reserve of 200 hrs.

- Easy time setting
- Sealing of cover to avoid unwanted modifications
- Possibility of manual override

	Description	Characteristics	Modules
		1 channel, daily dial with battery reserve of 200 hours after being connected for 120 hours	1 NO $16 \mathrm{~A}-230 \mathrm{~V} \mathrm{AC1}$ 1 module device

$\mathbf{1}$ channel, daily dial 1 changeover contact - \quad EH711

1 channel, daily dial
din rail / wall mounted with battery reserve upto 200 hours after being connected for 120 hours

1 changeover contact 16A-230V AC / wall mounted

1 channel, weekly dail
din rail /wall mounted
with battery reserve upto
200 hours after being
connected for 120 hours

1 changeover contact 16A-230V AC / wall mounted

Technical specifications

	EH 011	EH 111	EH 711	EH 771
Width in 17.5 mm	1	3	Wall Mount	Wall Mount
Version	daily	daily	daily	weekly
Electrical characteristics				
voltage supply	230V +10/-10\%		230V + 10\% - 15\%	$230 \mathrm{~V}+10 \%-15 \%$
frequency	50/60Hz		50/60Hz	50/60Hz
consumption	0.5VA		0.5 VA	0.5 VA
output	1NO	1 changeover	1 changeover	1 changeover
Switching capacity				
AC1	16A/250V		16A/250V	16A/250V
inductive load (cos phi $=0.6$)	4A/250V		3A/250V	3A/250V
incandescent lamps	900W		1000W	1000W
Characteristics				
technology	Quartz		Quartz	Quartz
dial	24 hours		24 hours	7 days
min. switching	15 min		20 min	2 Hour
max. number of switching	96			
accuracy	+/- 1 sec per day		+/- 1 sec per day	+/- 1 sec per day
supply failure reserve	200 hours	200 hours	200 hours	200 hours
reached in	120 hours	120 hours	120 hours	120 hours
manual override	auto/ON	auto/ON/OFF	auto/ON/OFF	auto/ON/OFF
Environment				
ingress protection	IP20		IP20	IP20
working temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$		$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
connection	1 to $4 \mathrm{~mm}^{2}$		1 to $6 \mathrm{~mm}^{2}$	1 to $6 \mathrm{~mm}^{2}$

EH 111 Electrical connections

EH 011 electrical connections

EH 111
Programming bycaptive segments

Simple time setting and programming using dual direction dial

EH 711 electrical connections

EH 711

EH 771 electrical connections

EH 771

Description

- Time switches improve comforts by switching loads
automatically as per real time
Features \& benefits
Large backlit display
Helps in saving energy

Technical data

- Conforms to IEC 60730
- Operating voltage : 230V ~ 50 Hz
- Connection : 6 for EG103E (screws)

1 to $2.5 \mathrm{~mm}^{2}$ for EG293B (quick connect)

Protective cover for LCD display

- Easy programming on the produc
- 20, 56, 300 (yearly) programming steps

Programmable via PC \& software (EG003U)

- 5 years battery reserve
- Yearly programming cycle

1 channel weekly program delivered with USB key EG005
capacity : 56 program steps
1 changeover contact
16A - 230V AC1
with "holiday" function
impulse function
programming via software
or using local keypad

EG103E
capacity : 300 program steps 4
2 changeover contacts
10A - 250V AC1
with "holiday" function
10 sub programs
programming through software
or using local keypad

Technical specifications

Electrical connections
EG 103E

Description

The hager range is composed of two Astronomical time switches EE180/EE181

Technical data

- Supply voltage 230V AC $\pm 15 \%$
- Power consumption : max. 6 VA
- Max. load 16A AC1
- Galvanic insulation between power supply and output
- Output (EE180): 1 changeover voltage free contact
(EE181): 2 changeover voltage free contact

Maintained ON
Temporary overrides
Programming via the PC software and the associated interface (EG003)
Weekly program

Features \& benefits

- Programming of the lighting interruption
- Automatic change of winter / summer time
- Astro program and expert program with individual Astro program steps
- Programming for day or group of days
- Anticipation ON

EE180

EG005
Description Characteristics Modules Cat. Ref.

Astro time switch $\mathbf{1}$ channel	capacity: 56 program steps	2	EE180
delivered with USB key EG005	1 changeover contact		
	230 V 50 Hz		

Astro time switch $\mathbf{2}$ channel	capacity: 56 program steps	2	EE181
delivered with USB key EG005	2 changeover contact		
	230 V 50 Hz		

PC programming Kit	for EE180, EE181,	EG003U
	EG103E, EG293B	

| Spare USB key \quad for EE180, EE181, EG103E | EG005 |
| :--- | :--- | :--- |

Spare USB key for EG293B \quad EG007

Technical specifications

	EE180 (1 channel)	EE181 (2 channels)
Width in 17.5 mm	2	2
Supply voltage	230V AC (+10\% / -15\%), 50/60Hz	
Number of output	1	2
Characteristics of relay	change over contact 16A AC1 $250 \mathrm{~V} / 10 \mathrm{~A} \cos \phi=0,6$	
incandescent	2300W	
230V-halogen	2300W	
Connection	terminal $\mathrm{n}^{\circ} 5$	
flexible	1 to 6mm2	
rigid	1,5 to 10 mm 2	
Environment		
storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	
working temperature	$-10^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$	
IP and IK	IP 20 IK 3	
Standards	CE + CTICK and CEI 60-669	
Functional characteristics		
display LCD	without backlighed screen	
operating reserve	Lithium battery 5 years	
precision	+/- 1,5s/day	
programming key	yes	
automatic change of winter/summer time	yes	
functions available in free		
programming	weekly programming / permanent override / temporary override	
Astro functions		
astro mode	yes	independent programming for each channel
programming of the lighting		
interruption	yes (if channel ASTRO)	
temporary override	15/30/60min.	
maintained	ON adjustment common to the 2 channels	
anticipation	ON adjustment common to the 2 channels	

Electrical connection
Presentation

Keys
\square menu : selection of operating mode
auto : mode of running according to the program selected.
prog : new for programming mode.
prog : modif to modify an existing program.
$<\quad$: checking of the program.
() : modification of time, date and selection of the winter / summer time change mode
astro : astronomical mode
3
indicates that the channel is in astronomical mode
$\square+$ and- : navigation or setting of values.
A (1) : in auto mode, selection of overrides,
b 何 or waivers.
\square ok : to validate flashing information on display.
$\square: \longleftarrow \quad$ to return to the previous step.
You may return into auto mode at any moment using menu.

If no action is taken for 1 min, the switch returns into auto mode.

Description

- This device controls lighting circuits in relation to ambient light, based on user settings

Technical data

- Maximum distance : 50 m between photocell and controller
- Available with electromechanical programmers
- Switch to select
-- Auto
-- Permanent ON
-- Permanent OFF
Must be used in conjunctionwith a suitable rated contactor
- Protected cable clamps capacity :
rigid : 1.5 to $10 \mathrm{~mm}^{2}$
flexible: 1 to $6 \mathrm{~mm}^{2}$

Features \& benefits

- LED to show status of changeover contact
- Sealable front cover
- Photo-electric cell measures the light level and in conjuction with the relay provides ON / OFF control of a circuit.
4 position override switch allowing
- auto: normal operating mode
- ON : permanently switched ON
- OFF : permanently switched OFF
- test: setting mode for easy adjustment

	Description	Characteristics	Modules

EE702

Technical specifications

	EEN100	EE110
Width in 17.5 mm	1	5
Electrical characteristics		
voltage supply	230V +10/-15\%	
frequency	50 Hz	
consumption	1.5VA maximum	
output	1 voltage free changeover contacts	
Maximum switching capacity		
AC1	16A / 250V	
incandescent lamps	2000W	
230V halogen lamps	1000W	
fluorescent lamps	-	
non compensated	1000W	
fluorescent lamps, compensated	200W	
in series	1000W	
duo fluorescent lamps	1000W	
Functional characteristics		
lighting level : 2 ranges	0 to 100 lux and 50 to 2000 lux	5 to 100 lux and 50 to 2000 lux
ON and OFF delay	60 sec	
mounting of cell	surface	surface
programmable	no	yes
technology		electromechan.
cycle		24 hours
programming setting		15 min .
accuracy		+/- 6min/year
operating reserve		200h after being connected for 120h
Environment		
working temperature	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ (cell)	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ (cell)
storage temperature	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Connection		
maximum length between cell and modular device	50 meters	
capacity (modular device)	0.5 to $4 \mathrm{~mm}^{2}$	
capacity (cell)	0.75 to $4 \mathrm{~mm}^{2}$	0.75 to $4 \mathrm{~mm}^{2}$

Cells	EEN003
Type	surface mounting
Dimension (mm)	$25 \times 25 \times 20$ hole $\varnothing 25 \mathrm{~mm}$
Connection	0.75 to $4 \mathrm{~mm}^{2}$
Ingress protection	IP 54
Working and storage temperature	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

Wiring diagram

EEN100

Technical specifications

	EE702 (Integrated photocell)
	Compact light sensitive switch
Dimensions	$80 \times 40.5 \times 95$
Supply voltage	230 V AC (+10\%/-15\%), 50 Hz
Characteristics of relay	NO contact 16A AC1
Incandescent	2300W
Halogen ELV (12 or 24V) via ferromagnetic or electronic transformer	1500 VA
Non compensated fluorescent tubes	400W
Compact fluorescents	2000W
Electronic ballast	900W
Connection flexible rigid	1 to $6 \mathrm{~mm}^{2}$ 1.5 to $10 \mathrm{~mm}^{2}$
Environment Storage temperature Operating temperature	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+60^{\circ} \mathrm{C} \\ & -25^{\circ} \mathrm{C} \text { to }+45^{\circ} \mathrm{C} \end{aligned}$
IP / IK	IP55 / IK03
Isolation class	2
Standards	NFC 15100 - IEC 60364-1-EN 60669-2-1
Functional characteristics	
Lighting switching-on level	Setting by potentiometer from 2 to 1000 lux hysterisis 10\%
Setting delay	Setting by potentiometer from 1 to 120 seconds

Dimensions

Electrical connections

Wall mounted PIR detectors

Hager range of PIR detectors are used for movement detection in outdoor areas and switch ON/OFF the loads accordingly. The range offers wide viewing angle and a long frontal detection area to maximise its effectiveness.

Advantages for you:

- Large area of detection gives better surveillance
- Suitable for outdoor applications, thanks to overmoulded gasket
- Vertical and horizontal orientation of detection head to control the detection area of the sensor
- Time delay and lux level can be set using IR remote control
- Easy ceiling and corner mounting with accessories

Technical data:

- Angle of view - $140^{\circ}, 200^{\circ}, 220^{\circ}$ and 360°
- Output relay - 10A AC1 and 16A AC1
- Detection area - 16 m frontal and 12 m dia.
- Time delay settings - from 5 sec . to 30 mins.
- Lux level settings - from 5 to 1000 lux

Expert tips

Mounting options

- easy corner mounting with accessory
- easy ceiling mounting with accessory

Vertical and horizontal adjustment of detector head helps in controlling the detection area

$140^{\circ}, 200^{\circ}, 220^{\circ}$ and 360° angle of view

4
IR remote control for setting time delay, lux level and sensitivity of the sensor

Description

- These devices are used for
automatic control of lighting in both residential \& commercial applications
- They monitor human movement in their detection zone and automatically switch on lights in case human movement is detected

Technical data
 EE804A

Surface mounted version

- Time delay and the lux level are set via potentiometers from 1-15 mins. \& 51000 lux respectively
- 1 NO contact, 10A

EE805A

- Flush mounted version
- Time delay and the lux level are set via potentiometers from 1-15 mins. \& 51000 lux respectively
1 NO contact, 10A

Features \& benefits

- They turn off the light after a preset duration
- They are particularly suitable for applications like corridors, parking areas, washrooms, godowns etc.
- They bring comfort and enhance security in residential buildings.

They guarantee significant savings in lighting power
consumption by switching on lights only when required

EE805A

EE883

EE880

Technical specifications

Mounting	EE804A surface mounted	EE805A flush mounted
Voltage supply	230V~, +10\%/-15\%	
Frequency	50/60Hz	
Power consumption without load	0.3 W	
Delay time, adjustable		
- Operation	$5 \mathrm{~s}-30 \mathrm{~min}$	
- Test mode	2 s	
- Factory setting	$\sim 3 \mathrm{~min}$	
Response brightness, adjustable	5... 1000 Lux	
- Factory setting	200 Lux	
Recommended installation height	2.5 m ... 3.5 m	
Maximum installation height	4 m	
Detection area Ø motion (installation height 2.5 m)	$\sim 6 \mathrm{~m}$	
Detection area \varnothing presence (installation height 2.5 m)	$\sim 4 \mathrm{~m}$	
Detection angle	360°	
Closing contact with zero cross switching	$10 \mathrm{~A} \mathrm{AC1} ,230 \mathrm{~V} \sim$	
Upstream circuit breaker	10A	
Incandescent and halogen lamps	230 V 2300 W	
LED lamps/Compact fluorescent lamps	$20 \times 20 \mathrm{~W}(400 \mathrm{~W})$	
Ferromagnetic transformers	1500 VA	
Electronic transformers	1500 W	
Fluorescent lamps		
- parallel compensated	1000 W	
- with electronic ballast	1000 W	
Relative humidity (no condensation)	$30^{\circ} \mathrm{C}, 95 \%$	
Operating temperature	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$	
Storage/transport temperature	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	
Degree of protection	IP 21	
Protection class	1	
Impact resistance	IK 04	
Dimensions EE804A ($\varnothing \times \mathrm{H}$)	$100 \times 50 \mathrm{~mm}$	
Dimensions EE805A ($\varnothing \times \mathrm{H}$)	$90 \times 61 \mathrm{~mm}$	
Connection cross-section		
- EE804A, screw terminals	$1 \mathrm{~mm}^{2} \ldots 2.5 \mathrm{~mm}^{2}$	
- EE805A, plug-in terminals	$1 \mathrm{~mm}^{2} \ldots 2.5 \mathrm{~mm}^{2}$	

Detection area
 EE804A - EE805A

4

Mounting - Movement detectors 360° EE804A - EE805A
ceiling mouting
They are particularly intended for use in interior traffic areas such as corridors, entrance halls.

1

Connecting and installing the flush-mounted variant - EE805A

- Establish installation opening $\varnothing 75 \mathrm{~mm}$.
- Connect motion detector according to the connecting diagram (figure 6).
- Establish strain relief on the corresponding mounting devices (11) with cable ties.
- Attach cover (12).
- Configure settings.
- Insert the two fixing springs (10) through the installation opening while pressing upwards and allow them to spring back.

Commissioning

Testing the detection

In test mode, the motion detector works with maximum response brightness. If motion is detected, the load is switched for approx. 2 seconds. After approx. 20 cycles, the operating cycles decrease in order to protect the connected load.

- Set potentiometer response brightness (6) to (right end stop) (figure 1/2).
- Set potentiometer delay time (7) to minimal (left end stop) (figure 1/2).

The device is in test mode.

- Carry out test by moving in the detection area.

If the motion detector switches on without motion in the detection area, then sources of interference are present (see Installation location).

Set delay time

The delay time is the period of time set in the motion detector which is the shortest time that the lighting is switched on when the response brightness is undershot and motion is detected. On delivery, the delay time is set to approx. 3 minutes.

- Turn the delay time potentiometer (7) to the desired position.

Hyper Frequency Motion Detector - EE883

Technical characteristics

	EE883
Supply voltage	$230 \mathrm{~V} \sim 50 \mathrm{~Hz}$
Detector frequency	$5.8 \mathrm{Ghz}+/-0.075 \mathrm{Ghz}$
Detection area	360°
Receiver class	2
Standby consumption	1 W
Duration of lighting output operation	$5 \mathrm{~s} \ldots 15 \mathrm{~min}$
Luminosity threshold	$2 \ldots 2000$ lux
Detection sensitivity	$1 \mathrm{~m} \ldots 8 \mathrm{~m}$
Recommended installation height	$2,5 \mathrm{~m}$
Fixing accessories	$2 \mathrm{screws} \mathrm{4.5} \mathrm{~mm} \mathrm{\varnothing} \mathrm{and} \mathrm{length} \mathrm{50mm}$
Operating temperature	$-20^{\circ} \mathrm{C}->+50^{\circ} \mathrm{C}$
Storage temperature	$-35^{\circ} \mathrm{C}->+70^{\circ} \mathrm{C}$
Insulation class	II
Protection rating	$\mathrm{IP54}$
Standards	$\mathrm{EN} 60669-2-1 ; \mathrm{RF} \mathrm{Standard} \mathrm{ETSI} \mathrm{EN} 300440-,1 \mathrm{~V} 1.3 .1$
Upstream protection	$10 \mathrm{~A}\left(\mathrm{~T} \leq+35^{\circ} \mathrm{C}\right), 6 \mathrm{~A}\left(+35^{\circ} \mathrm{C}<\mathrm{T}<+50{ }^{\circ} \mathrm{C}\right.$
Maximum installation altitude	2000 m
Pollution degree	2
Connection	$\mathrm{max} 1,5 \mathrm{~mm}{ }^{2}$

Potentiometer settings

(1)	$\xrightarrow{(1)}$	Adjustable potentiometer (1) detection sensitivity (detection area)
(2)	$c-(\underset{\leftarrow}{c}$	Adjustable potentiometer (2) luminosity threshold
(3)	$\min _{\Omega}(\oslash)_{\text {max }}^{\ominus}$	Adjustable potentiometer (3) duration of operation

Installation

Installation steps

1. Loosen the screws (4) retaining the lid (5)
2. Remove the lid(5)
3. Use 2 screws to fix the box (6) to the ceiling or wall (diameter 4.5 mm and length 50 mm).
4. Wire the detector in accordance with the connection diagrams.
5. Refit the lid (5)
6. Correctly tighten the two screws (4) retaining the lid (5) in order to ensure a good seal
7. Adjust the potentiometers.
8. Fit the protective cover (7). Be sure to press on the cover to ensure that it clips in place correctly.

Important:

The detector requires 10 seconds to initialize after the power is switched on.

In the case of an installation in a wet place, it is necessary to drill the drain hole (8) on the cover.

The wires passage (9) can be broken on the cover if necessary.

Wiring diagrams

Legend
(A)Lamps
(B) Detector terminals
(C) Single switch
(D) Two switches
(E)Change over switch

Lamp connection without neutral conductor

Lamp connection with neutral conductor

Connection using two switches for manual or automatic control (possibility of simultaneous switch off of the lamp AND the detector)

Auto operation by detection or Forced switch-off or Forced switch-on of the lamp

Connection using a change over switch to operate either the lamp or the detector

Auto operation by detection or Forced switch-on of the lamp

IR motion detector for Corridors - EE880

Technical characteristics

	EE880
Supply voltage	$230 \mathrm{Vv} 50 / 60 \mathrm{~Hz}$
Detection area	$20 \mathrm{~m} \times 4 \mathrm{~m}$
Standby consumption	1 W
Duration of lighting output operation	$5 \mathrm{~s} \mathrm{\ldots} 15 \mathrm{~min}$
Luminosity threshold	$2 \ldots .2000 \mathrm{lux}$
Recommended installation height	3 m
Accessoires de fixation	$2 \mathrm{screws} 4.5 \mathrm{~mm} \varnothing$ and length 50 mm
Operating temperature	$-20^{\circ} \mathrm{C} \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature	$-35^{\circ} \mathrm{C} \Rightarrow+70^{\circ} \mathrm{C}$
Insulation class	II
Protection rating	IP 54
Standards	$\mathrm{EN} 60669-2-1$
Upstream protection	$10 \mathrm{~A}\left(\mathrm{~T} \leq+35^{\circ} \mathrm{C}\right)$
Maximum installation altitude	$6 \mathrm{~A}\left(+35^{\circ} \mathrm{C}<\mathrm{T}<+50^{\circ} \mathrm{C}\right)$
Pollution degree	2000 m
Connection	2

Installation

Installation steps

Surface mounting of the EE880

1. Loosen the screws (4) retaining the lid (5).
2. Remove the lid (5).
3. Use 2 screws to fix the box (6) to the ceiling or wall (diameter 4.5 mm and length 50 mm).
4. Wire the detector in accordance with the connection diagrams (see "Connections").
5. Refit the lid (5).
6. Correctly tighten the two screws (4) retaining the lid (5) in order to ensure a good seal.
7. Adjust the potentiometers (see "potentiometer settings").
8. Fit the protective cover $(7$. Be sure to press on the cover to ensure that it clips in place correctly

Potentiometer settings

(2) ${ }^{\ominus}$ Adjustable potentiometer

Important:

The detector requires 10 seconds to initialize after the power is switched on.

Test Procedure

To test the operation, set the luminosity threshold to maximum, y , and the duration of operation to minimum, 5 seconds; this will cause the detector to trigger immediately, allowing you to check the operation.

Operation with detector

1. To turn on the light (if the lamp is at OFF)

- Actuate the switch in the following manner
"OFF" - "ON" i.e. $1 \times$ OFF and ON.
The lamp remains lit for the duration set.

2. To turn off the light (if the lamp is at ON)

- Actuate the switch in the following manner
"OFF" - "ON" i.e. 1 x OFF and ON.
The lamp turns off or returns to detection mode.

Constant lighting (4 hr)

1. To activate constant lighting

- Actuate the switch in the following manner
"OFF" - "ON" - "OFF" - "ON" i.e. $2 \times$ OFF and ON.
This process must be completed in less than 1.5 s .
The lamp then switches to constant lighting for 4 hours
(the red LED remains lit). It then returns automatically
to detection mode (the red LED goes off).

1. Deactivating constant lighting:

- Actuate the switch in the following manner
"OFF" - "ON" i.e. $1 \times$ OFF and ON.
The lamp turns off or returns to detection mode.

Description

Hager presence detectors are specially suited for applications like office cabins, conference rooms, cafeteria, class-rooms etc.

Features \& benefits

Double lens technology used in hager PIRs offers exceptional standards in infrared detection

- Micro movements are sufficient to switch on and maintain lights on
- Adjustable head orientation allows adapting the detection zone according to rooms configuration
- Lights are inhibited from being switched on if natural light is sufficient in the room
- Direct control of a light load or used as a slave for detection area enlargement
- Lux level and ON delay setting via potentiometers
- Test mode in order to set lux level and the detection area

Description	Characteristics	Cat. Ref.
Presence detector 1 channel - 1 NO relay output - lux level and On delay defined via potentiometers	$\begin{aligned} & 230 \mathrm{~V} \sim 50 \mathrm{~Hz} \\ & 16 \mathrm{~A} \mathrm{AC1} \end{aligned}$	EE810
Presence detector 2 channels - 1 NO relay output for light channel - lux level and on delay defined via potentiometers - Relay output presence channel - on delay presence defined via potentiometer	$\begin{aligned} & 230 \mathrm{~V} \sim 50 \mathrm{~Hz} \\ & 16 \mathrm{~A} \mathrm{AC1} \end{aligned}$ 2A AC1	EE811
Presence detector with daylight regulation - 1/10V channel for connecting ballast - 3 functional mode - no regulation - light regulation with local set point - light regulation with remote set point - Connection of upto 30 dimmable ballast	30 ballast	EE812
Presence detector monobloc with remote control adjustment - One relay output of 16A AC1 - Lux level and on delay adjustment on the product and with remote control	$\begin{aligned} & 230 \mathrm{~V} \sim 50 \mathrm{~Hz} \\ & 16 \mathrm{~A} \mathrm{AC1} \end{aligned}$	EE815
Presence detector with daylight regulation - DALI/DSI channel for connecting ballast - 3 functional mode - automode - regulation with local set point - regulation inactive - 4 scene recall with IR remote control - Lux setting, on delay setting via IR remote or on the product	Regulation of 24 ballast	EE816
IR remote control for parameter setting of EE815 \& EE816 - Set or modify settings of EE815 \& EE816 - Multiple settings can be stored in memory	IR, battery operated	EE807

| IR remote control for | $\\| R$, battery operated | EE808 |
| :--- | :--- | :--- | user to operate EE816

- Four scene buttons for easy scene recall
- ON/OFF, dim up/down button

EE810/EE811/EE812
detection areas

Description

Technical specifications

ref.	EE810	EE811	EE812
type	presence detector + movement	presence detector	presence detector + daylight regulation
	1channel	2 channels	1 channel
supply voltage	230V~ + $10 \% /-15 \% / 50 \mathrm{~Hz}$		
settings: output brightness 1/3 output temporisation 1 output temporisation 2/3	potentiometer : auto (400 Lux) 5 to 1200 Lux, OFF potentiometer : 1-30 min, test, impulsions (EE810) potentiometer : 30 s-1 h		Regulation Inactive : Mode 1 Regulation Active : Mode 2 Regulation Active : Mode 3
residual brightness	-	-	-
breaking capacity output 1 (lighting)	16 A AC1, incandescent lamps, halogen: 1500 W 10A AC1 fluo with electronic ballast: 580 W fluo parrallel compensated: $290 \mathrm{~W} / 32 \mu \mathrm{~F}$		30 nos. 1-10V ballast
output 2 (presence)	-	2A AC1	-
output 3 (brightness setting)	-	-	-
input command 50 m max.	-	$230 \mathrm{~V}$ commutation	-
LED	OFF, auto, ON : movement/test		
power consumption	1.2 W	1.1 W	1.2 W
ingress protection	IP41		
connection	1-4 mm ${ }^{2}$		
temperature	storage : $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ working : $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$		

Test mode :

This mode makes it possible to validate the detection area :

- potentiometer in position "test"
- indicator V1 - will indicate any detection by lighting for one second if the level of illumination is lower than the preset threshold. This lighting output S 1 is not controlled in this mode, the time settings will remain ignored.

Instances of lighting levels

position of potentiometer	Lux value	Application
1	5	-
2	100	corridor
3	200	corridor, WC
4	100	VDU work
5	500	offices
6	$800-1200$	classrooms laboratory
ON	measurement of britghness @inhibited	

regulation set point is set at 400 Lux.

Presence detection

Based on a solution patented by hager, the optical part presence detection rests on a double lens making it possible to obtain a zone of rectangular capture. The head of the detector can also swivel to adjust the detection zone. The latter is subdivided in two sections equipped with a density higher than the center and a density to reduce in the direction of length. in the offices, these detectors should thus be assembled directly above the places of work, and in the direction of length for an installation in corridors (zones of circulation).

movement detection	presence detection	movement detection
$13 \times 7 \mathrm{~m}$ (installation max. high 2.5 m)		

Detection zone

Covering a rectangular detection zone of $13 \times 7 \mathrm{~m}$, the Hager presence detectors represent an ideal solution for the offices, classrooms, toilets, corridors, markets and garages. In the event of assembly of two detectors in order to increase the range of detection, it is then recommended to respect a zone of covering of approximately a meter. Only two detectors will be thus necessary to cover a 25 m length. A possibility of Master/Slave circuit exists for the communication of only one group of luminaries. The master presence detector EE812 or EE811 measures the lighting and the presence, then commutates and controls the electrical load. Auxiliary presence detectors EE810 detect only the presence and will announce this one to principal, which will carry out commutation and regulate the loads. The diagrams of wiring are illustrated in the respective instructions.

Assembly

The behavior of commutation will be determined by the passage of people in the zone of capture of the detector. In exceptional cases, an inopportune commutation can be caused by various influences. The sources of potential parasites should already be evaluated during the study of the project, resp. eliminated before the assembly.

Obstacles decreasing the range of the detector:

- the partition walls, plants or racks, etc can limit the range of detection.

Simulated movements :

- the presence detectors capture fast modifications of temperature in the environment of the detector as being movements, for example at the time of or the stop starting of lowers with hot air, ventilators etc when the flow of air is directed directly on the lenses or of the objects near the zone of capture of the detector.
- objects being heated slowly do not have a negative influence and do not cause inopportune commutation.
A side distance $>0.5 \mathrm{~m}$ should however be respected.
Proximity of the conduits of heating and the bodies of radiators.
- luminaries switching on themselves and dying out near the zone of detection can simulate a displacement (pe.g of the lamps incandescence or halogen located at a distance $<1 \mathrm{~m}$).
- objects moving such as mobile machines, robots, posters can also cause an inopportune detection.

EE810

EE811

EE811 Master + EE810 Slave

EE812

Apparent assembly

Flush-mounted assembly

Technical specifications

	EE815	EE816
Detection range	Movement detection area : Diameter 7m (product installed at 2.5 m height) Presence detection area : Diameter 5m (product installed at 2.5 m height)	
Supply voltage	230 V AC + 10\% - 15\%	
Frequency	$50 / 60 \mathrm{~Hz}$	
Local lux threshold setting	$5->1000$ lux	3 modes available
Local time setting	1 min. ->1h	
Commissioning via installer remote control	EE807 for power up, absence/presence mode, timer, active/passive cell	EE807 for power up, absence/presence mode, timer, active/passive cell
Control with IR user remote control	-	EE808 for ON/OFF override and dimming up/down
Output	16A AC1 relay output (cut live) : - 2300W Incandescent or 230V Halogen : > 26000 cycles - 1500W VLV halogen lamps with ferromagnetic or electronic or transformer : > 35000 cycles 1000W Fluorescent via electronic ballast : > 39000 cycles - 1000W / 130رF Parallel compensated fluo tubes : > 50000 cycles - 23×23 W Fluo-compact with electronic ballast : > 20000 cycles	$14 \mathrm{~V} / 50 \mathrm{~mA}$ (for a DALI bus with 24 ballasts) - No isolation between the mains and the DALI bus!
Push button input	Phase input for absence/presence detection (semi-automatic/automatic mode) Same phase as power supply	To dim up/down and absence/presence detection (semi-automatic/automatic mode) Same phase as power supply
Terminals	For $1.5 \mathrm{~mm}^{2}$ rigid/flexible wires	
Power dissipation	300 mW	60 mW
Isolation class	II	II
Protection	IP41 / IK03	IP41 / IK03
Operating temperature	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Standards	IEC 60669-1, IEC 60669-2-1, CE Ctick	

Detection area

Setting EE815/EE816

Wiring diagram EE815 and EE816

EE815

EE816

Description

These devices are made for automatic control of lighting in both the residential, commercial and industrial sectors

Features \& benefits

- They automatically switch on lighting when movement is detected

They turn off the circuit after the preset duration

- They bring comfort and enhance security of exterior areas
- These devices are suitable for outdoor application (IP55) and can be mounted on wall, ceiling and corners
They provide significant savings in lighting power consumption by illuminating only when necessary

Products are equipped with Fresnel lenses that allow high frontal detection per formance and downwards detection:

- 220° frontal detection zone
-- Twin $220^{\circ} / 360^{\circ}$ to detect in a frontal \& downwards zone
- Time, Lux, sensitivity are achieved locally, via potentiometers
- It's also possible to set the detectors with an IR remote control which provides speed \& convenience when setting final adjustments
Detectors can be mounted in corners utilising the relevant corner mounting accessory

EE820

EE825

Description

Detector comfort
wall mounting
230 V $50 / 60 \mathrm{~Hz}$
Lux: 5 to 1000 lux
Timer: pulse, 5 s to 15 min
Contact 10A AC1

Corner mounting bracket	EE825

Ceiling mounting bracket

Detector enhanced 140°
EE850
wall mounting
230 V $50 / 60 \mathrm{~Hz}$
220°
EE860
Lux: 5 to 1000 lux
Timer: pulse, 5 s to 15 min
$220^{\circ}+360^{\circ}$
(30 min with IR remote control.)
Sensitivity min. 20\%, max. 100\%
Contact 16A AC1

IR remote
Corner mounting bracket

Technical specifications

Auto/OFF

Detectors in parallel

Detection zone

Auto/ON

Combination with a timelag

The optimal height of installation is $2,5 \mathrm{~m}$.
The detection field must remain
free.
EE82x: $\alpha=140^{\circ}$
EE83x: $\alpha=200^{\circ}$

Description

- The LED EE600 floodlight is fitted with a detector sensitive to infrared radiation linked to heat emissions from any moving body.
- The floodlight switches on when a heat emitting body moves within the detection zone. It remains on for the duration configured on the detector and until no further movement is detected in the surveillance zone.
- When first connected, the floodlight illuminates for 45 seconds.
- The parameters are adjustable after this period.

Features \& benefits

- Motion $220-360^{\circ}$ C for the local extraction with bottom area protection
- High power LED (60W)
- LED spotlights adjustment horizontally 180°
- LED spotlights adjustment vertically 340°
- Degree of protection IP55
- Plug + Play connector assembly
- Lock for settings on the device
- Operating temperature range -20 to $+45^{\circ} \mathrm{C}$

Optional remote control EE806

for the settings

- Time delay
- Brightness value
- Sensitivity
- On Off,

Low standby consumption

- Wall mounting without accessories

Rentals

- Detection range: 16 m
- Hide covers to limit detection area in Scope of delivery
- Horizontal lens shift +/- 80°
- Holidays
- Auto

Reset (Factory Reset)

- Test

| | Description Characteristics |
| :--- | :--- | :--- |
| | |

LED Floodlight - EE610

Description

- The EE610 LED lamp is equipped with a detector sensitive to infrared radiation linked to the emission of heat from any moving body. The detector turns on the lamp when a body that emits heat moves within in its area of detection.

for the settings
 - fixed time,

- level of luminosity,
- sensitivity (detection area),
- on / off,
- holidays,
- auto,
- reset (return to factory settings),
- test.

The parameters are adjustable after this period.
Description Characteristics Cat. Ref

EE610

Technical specifications

Power	60 W
Standby Consumption	0.5 W
Light color	5700 K
Luminous flux	3400 lm
Power Supply	$230 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$
Insulation Class	II
Wiring	1 to $1,5 \mathrm{~mm}^{2}$
Protection index	IP55
Functioning temperature	-20° to $+45^{\circ} \mathrm{C}$
Storage temperature	-20° to $+60^{\circ} \mathrm{C}$
Detection range	$220^{\circ} / 360^{\circ}$
Detection zone	12 m
Lux setting	5 to 1000 lux
Time setting	5 s. to 15 min.
Weight	2 kg
Dimension	$320 \times 150 \times 150 \mathrm{~mm}$
Accessories	Adjustable shutters, mounting screws
IR Remote	To be order seperately

Description

Dimensions

Installtion

Installation steps:

1- Screw the block to the wall
2- Connect the wires as shown in the diagram
3- Clip the projector onto the block (a click confirms the connection)
4- Screw the floodlight onto the block (screws located behind the detector head).

Working

Detection area

Testing and validating

the detection area

Put the potentiometer 2 on Test mode and if necessary, use the shutters to define the detection zone.

The Test mode is available for 3 min. Every movement detected switches on the light for 1s. After 3 min without detection of movement, the product returns to normal operation.

"Normal" operation (on/off)

The light panel switches on when the luminosity level defined by potentiometer 2 is judged to be insufficient and when a movement is detected.
After detection, the light stays on for the length of time predefined by the potentiometer 1 . The fixed timing is reset after each detection.

Please note: when the potentiometer 2 is on "auto test", the settings are predefined (See table on next page).

Installtion Settings:

Action	Settings	Potentiometer
Use Auto settings (factory) or set by the remote control to switch the light automatically for a given time.	Auto Settings Put the Lux potentiometer on "auto test". The settings are predefined: Lux $=\mathbb{C}$ (operating at night only) time $=3 \mathrm{~min}$, sensitivity $=$ max. Remote control settings (Manual Settings inhibited).	
Automatically switch on the light for a defined time.	Installer settings	
Briefly turn on the light.	Impulse Ω Auto settings are usable with time $=5 \mathrm{~s}$. (cannot be changed).	
Test and validate the detection zone.	Test mode Move the potentiometer 2 to "auto test". On this position, the remote control can be used. After 3 min without detection of movement, the product returns to normal operation.	
Adjust the sensitivity.	Allows setting the range to avoid disturbance.	

Potentiometer position	Values in lux
C	≤ 5
C/D-	$\approx 50 / 60$
車	<1000

Using the remote control

The detector receives instructions from the remote control when the Lux potentiometer 2 is on the "auto test" position. If the potentiometer is put on another value, the local setting resumes. The LED of the detector lights up to confirm the signal with the remote control.

It flashes quickly for 2 s when an instruction is received and 5 s for a reset. When an instruction is not authorised, the LED lights up for 1 s.

What to do if...

The available settings are :

- fixed time,
- level of luminosity,
- sensitivity,
- on / off,
- holidays
- auto
- reset (return to factory settings)
- test.

The floodlight does not switch on :

- In day/night mode, the twilight setting is set to night only mode.
-- Readjust.
- Incorrect adjustment of the detection zone.
-- Readjust.

The floodlight does not switch off :

- Continuous movement in the detection zone.
-- Inspect the detection zone, you may need to readjust the zone or mask part of it.

The floodlight continually switches on and off

- Animals are moving in the detection zone.
-- Adjust the sensitivity.

The floodlight switches on involuntarily :

- The wind is stirring the trees and bushes in the detection zone.
-- Adjust the zone.
- Cars passing on the road are being detected
-- Adjust the zone.
- Sudden temperature changes due to the weather (wind, rain or snow).
-- Adjust the zone or mount the equipment in a different place.

Technical specifications

Power	around 15 W (75 W luminous energy)
Colour of the light	4000 Kelvin
Luminous flux	1100 lumen
Power supply	$230 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz}$
Compulsory protection	$10 \mathrm{~A} \mathrm{gG} / \mathrm{gl}$ fuse or
	16 A circuit-breaker curve C or curve B
Insulation class	II
Recommended cable	$\mathrm{U} 1000 \mathrm{R02V} 3 \mathrm{G} 1.5$
Connection without screws (Sanvis)	$1,5 \ldots 2,5 \mathrm{~mm} 2$
terminals	
Protection class	IP55
Operating temperature	$-25 \ldots+50^{\circ} \mathrm{C}$
Storage temperature	$-30 \ldots+70^{\circ} \mathrm{C}$
Detection angle	140°
Forward detection distance	6 m (by default)
Twilight threshold setting	$12 \mathrm{~m} \mathrm{maximum} \mathrm{(with} \mathrm{remote} \mathrm{control)}$
Operating duration setting	$5 \ldots 1000$ lux
Accessories	$5 \mathrm{~s} \ldots 15$ min
Standards	Mounting screws and wall plugs

Description

Dimensions

Installtion

Installation steps:

- Insert the cable into the cable grommet 1 in order to facilitate access to the cables during assembly.
- Screw the wall plate 2 to the wall using the 2 screws and wall plugs provided 3
- Connect the wires as shown in the diagram 4 . The earth terminal is used for earth wire parking only.
- Clip the body of the lamp 5 onto the wall plate 2 (a «click» confirms that the casing is closed).
- Tighten the theft prevention screw 6 located under the LED lamp.
- Carry out the adjustments (see pages 8 and 9).
- Put in place the cover 7 .

Dismantling

Dismantling steps:

- Place a flat screwdriver in the notch of the cover 7 and push it towards the wall ($\sim 2 \mathrm{~mm}$).
- Press the rear of the cover, rotate it and remove.
- Loosen the theft prevention screw 6 located under the LED lamp.
- Using a flat screwdriver, press in the upper notch of the product.
- Remove the body of the lamp 5 from the wall plate 2

Settings

Testing and validating the detection zone

Put the potentiometer B on "test" mode. The "test"mode is available for 3 min. Every movement detected switches on the light for 1 s .
After 3 min without detection of movement, the product returns to normal operation.

"Normal" operation (on/off)

The lamp is lit when the brightness level set by potentiometer B is judged insufficient and a movement is detected. After detection, the light stays on for the length of time predefined by the potentiometer A. The fixed timing is reset after each detection.

Please note : when the potentiometer B is on "auto test", the settings are predefined (see table below).

Detection zone

Optimal installation height is 2 m .
The detection zone shall remain free of obstacle.

Installtion Settings:

Action	Settings	Potentiometer
Use Auto settings (factory) or set by the remote control to switch the light automatically for a given time.	Auto Settings Put the Lux potentiometer on "auto test". The settings are predefined: Lux $=\mathbb{C}$ (operating at night only) time $=3 \mathrm{~min}$, sensitivity $=$ max. Remote control settings (Manual Settings inhibited).	
Automatically switch on the light for a defined time.	Installer settings	
Briefly turn on the light.	Impulse Ω Auto settings are usable with time $=5 \mathrm{~s}$. (cannot be changed).	
Test and validate the detection zone.	Test mode Move the potentiometer B to "auto test". On this position, the remote control can be used. After 3 min without detection of movement, the product returns to normal operation.	

Potentiometer position	Values in lux
(C	≤ 5
C/X	$\approx 50 / 60$
Cor	>1000

Using the remote control

(option: ref. EE806 / 52900

The detector receives instructions from the remote
control when the lux potentiometer B is on the "auto test" position.
If the potentiometer is put on another value, the local setting resumes.
The LED of the detector lights up to confirm the signal with the remote control.
It flashes quickly for 2 s when an instruction is received and 5 s for a reset.
When an instruction is not authorised, the LED lights up for 1 s .

The available settings are:

- fixed time,
- level of luminosity,
- sensitivity (detection area),
- on / off,
- holidays,
- auto,
- reset (return to factory settings),
- test.

What to do if...

The lamp does not switch on

- In day/night mode, the twilight setting is set to night only mode
- Readjust.
- Incorrect adjustment of the detection zone.
- Readjust.

The lamp does not switch off

- Continuous movement in the detection zone.
- Inspect the detection zone, you may need to readjust the zone.

The lamp continually switches on and off

- Animals are moving in the detection zone.
- Adjust the sensitivity.

Description

- The Hager products are suitable for all light sources : incandescent, LV and - Control possible by illuminated pushbutton until 5 mA

VLV halogen, fluorescent with dimmable electronic ballast

- Fluocompact dimmable light \& dimmable 230V LED lamp with built in supply , very low voltage dimmable LED lamp (12 V to 24 V) with electronic ballast . (300 W \& 500 W dimmer)

Features \& benefits

- Dimming controlled by bell push switch :
-- start/stop by short press
-- increasing/decreasing by maintaining pressure
- Softstart (progressive start) to increase the lifespan of lamps
- Memorisation of last dimming level
- Protection against overheating
- Pilot function for 1-10V slave dimmers or ballast
- Scene inputs
- Control by several push buttons for 300W dimmers
- Universal products with automatic recognition of the load type (inductive / capacitive) for 500W \& 1000W dimmers
- Electronic protection against overheating and overload
- Indicators : 230V / overheating / overload
- Load teaching, dimming mode, over ride \& comfort features available in 300W \& 500W dimmers

EVN004

Enhanced universal

dimmer 500 W

for:

- incandescent 230 V
- halogen 230 V
- VLV halogen lamps supplied by ferromagnetic or dimm-able electronic transformer ($\cos \mathbf{j}^{\mathbf{3}} 0,95$)
- dimmable fluocompact lamps with 230 V built in ballast
- 230 V dimmable LED lamps
- dimmable VLV LED lamps via electronic ballast

500 W / VA
$230 \mathrm{~V} / 50 \mathrm{~Hz}$

- products with load teaching feature
- dimming override mode for different load
- comfort features for dimming
-- scene
-- time delayed scene
-- progressive switch off
-- Night light
- recall mode with pushbutton
- scene level setting by push button

EV102

Universal dimmer 1000 W with

scene inputs

- Functional selection mode via local switch :
-- control via pushbutton (local)
-- remote control via 1/10V (slave)
-- control of the other dimmers via 1/10V (master)
- Display to show the dim level and to set the parameters:
-- dimming rise time (4s ..99s)
-- min dim level (0...49\%)
-- max dim level (51..99\%)
-- rise time when switching ON
(1s..99s)
-- fall time when switching OFF
(1s..99s)
-- scene level
-- dimming rise time for each scene
-- scene working mode : recall or override mode
- Output contact to display the dim state (load is OFF, contact is opened, if load is dimmed the contact is closed)
- LED indication :
-- 230V power supply / load error
-- overload / overheating

Load type :

- incandescent
- 230V halogen lamps
- ELV halogen lamps associated to ferromagnetic transformer (inductive)
- ELV halogen lamps associated to electronic transformer (capacitive)

230 V ~ / 50 Hz
5
EV102

20 ... 1 000W

1/10V-input/output
(max. $50 \mathrm{~mA}, 30 \mathrm{EV} 102$)
defined via the local switch

Contact output
$1 \mathrm{NO}, 250 \mathrm{~V} \sim, \mu 5 \mathrm{~A}$

Description
Modules
Cat. Ref.

1/10V pilot dimmer with scene 4 EV108

input

- To control EV102 (max. 30)
- To dim electronic ballasts
- Wiring of illuminated
pushbuttons possible
up to 5 mA
- Display to show the
dim level and to set the
parameters:
-- dimming rise time (4s ..99s)
-- min dim level (0..49\%)
-- max. dim level (51..99\%)
Contact output to display the dim state (load is OFF, contact is opened, if load is dimmed the contact is closed). It is used to switch ON/OFF the electronic ballast
- Scene inputs used for override
(3 levels) or simple recall (2)
- For each scene
-- dimming rise time
-- scene level
-- and scene mode
(recall or- override)

Time lag switch

Description

- A staircase time lag switch allows you to switch on the lights during an adjustable time. After the time lag, the lights switch off automatically.

Features \& benefits

- Time delay setting from 30 seconds to 10 minutes
- Automatic \& manual mode (for manual override)
- 4 different mode of operations
- In prewarning mode (B) the light blinks before end of lighting ON period

Description

Time lag switch for automatically switching off lights after adjustable time lag.

In double delay mode (C)
The time lag can be extended to one hour pressing bell push switch for more than 3 sec .
In mode D prewarning at the end of lighting ON period and extending of time lag period upto 1 hour is possible

Dimmable VLV (12 or 24 V) LED lamp via electronic transformer

Dimmable fluocompact lamps with

230 V built in ballast
230V dimmable LED lamps

1/10V control (output only)
fluo with electroballast $1 / 10 \mathrm{~V}$

EVNO12
EVN004
EV108 with scene inputs

	300 W	500 W	1000 W	Pilot 1/10 V
Technical features	EVN012	EVN004	EV102	EV108
Controls available - on the product - external with illuminated pushbutton - input $1 / 10 \mathrm{~V}$ - ambient lighting setting	yes	yes 1	yes yes yes (slave) 2 levels	yes yes 2 levels
Types of outputs : - direct (capacitive/inductive load) - input $1 / 10 \mathrm{~V}$	yes (only capacitive)	yes	yes yes (master)	yes
Functions: - protection overheating / overloads - level indicator - memorisation - softstart	$\begin{aligned} & \text { yes * } \\ & - \\ & \text { yes } \\ & \text { yes } \end{aligned}$	yes yes yes	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \text { yes } \\ & \text { yes } \end{aligned}$	yes yes yes
Parameter setting : - mini, max. level - dimming speed - speed at start / stop - transition speed for level call	- - - -	- - - -	$\begin{aligned} & \text { yes } \\ & \text { yes } \\ & \text { yes } \\ & \text { yes } \end{aligned}$	yes yes yes yes

dimmer 300 W

EVN012
universal dimmer 500 W

EVN004
system dimmer
universal dimmer 1000 W

EV102
system dimmer
1-10 V pilots

EV108

Choice of dimmers according to : lighting sources, dimming ranges and other characteristics

Choice of pilot dimmers for direct control via 1/10V tranformers or electronic ballast

lighting source	O W	30 kW
VLV halogen lamps supplied by $1 / 10 \mathrm{~V}$ variable transformer fluorescent lamps or compact fluo lamps with electronic ballast variable in $1 / 10 \mathrm{~V}$	EV 108* pilot $1 / 10 \mathrm{~V}$ multi-dimming (a call of memorized levels)	
	* conditions to respect : a) \mathbf{S} । (ballast $1 / 10 \mathrm{~V}$, 50 mA b) \mathbf{S} I (ballast + lamp), $10 \mathrm{~A} / \mathrm{AC} 1$	
	example : for the lighting of a hall 30 tubes of $2 \times 36 \mathrm{~W}$ are requested characteristics of used ballasts: $\quad{ }^{\text {(ballast } 1 / 10 \mathrm{~V})}=1 \mathrm{~mA}$ $\mathrm{I}_{\text {(ballast }+ \text { lamp) }}=0,31 \mathrm{~A}$ calculation: S $\mathbf{I}_{\text {(ballast } 1 / 10 \mathrm{~V})}=30 \mathrm{~mA}, 50 \mathrm{~mA}$ $\mathbf{S} \mathrm{I}_{\text {(ballast }+ \text { lamp) }}=9,3 \mathrm{~A}, 10 \mathrm{~A}$ After checking, $1 \times$ EV 106 or EV 108 can pilot this installation	
Choice of dimmers for functioning in a system		
to control high powers	dimmer EV 102 (master position)+EV102 (slave position)	
	* conditions to respect : a) $\mathbf{S} \mathbf{I}_{\text {(ballast } 1 / 10 \mathrm{~V} \text {, }} 50 \mathrm{~mA}$ or maximum 30 dimmers	
	example : total power to dim : 8.6 kW requested products: $1 \times$ EV 102 and $8 \times$ EV $100=9 \mathrm{~kW}$	

Dimensions

dimmer EV 102

\square
\square

dimmers EV 108

Technical specifications

(*) Level setting from 0 to 99%. Call of level by pushbutton. Priority setting of level by maintained control (switch).
$(* \star) 3$ ambient levels are available in priority setting mode :

> - level 1 if contact E1 is closed
> - level 2 if contact E2 is closed
> - level 3 if contacts E1 + E2 are closed

Requirements :

-To calculate the maximum number of lamps, it is necessary to take into account the power loss of ferromagnetic transformers (around 20\%)
The transformer should not be used at less than 75% of its nominal load.

- Electronic transformers : take into account approximately 5% power loss.
- Respect recommandations of manufacturer of the lightings.
- Compact fluorescent lamps with integrated ballast can not be dimmed.

Technical specifications

Products	EV 108
width (in modules)	4
supply voltage	
power dissipation	3 W
output contact	
load system 1/10 V	output $1 / 10 \mathrm{~V}$ max 50 mA (electronic ballast) or 30 EV 102 ; maximum cable connection $1 / 10 \mathrm{~V}: 50 \mathrm{~m}$
display of lighting level and setting up	yes dimming level from 0 to 99 \% easy for programming and for checking all the settings
functional characteristics	
on product ON / OFF - by local pushbutton - by illuminated pushbutton wiring length	1 bell push
ambient level (scenes) call scene by pushbutton priority setting by switch scene settings	```2 inputs = 2 or 3 levels 2 available levels 3 levels from 0 to 99 % E1 and E2 closed = level 3```
dimming speed	
normal dimming by bell push	dimming rise time from 4 to 99 seconds from level 0 to 100%
dimming speed at start - dimming speed at stop - speed to reach ambient level	0 to 99 seconds (duration from 0 to 100%) 0 to 99 seconds (duration from 100 to 0%) this parameter definises the speed used o reach the scene level (100\%) : 0 to 99 min . 59s
mini / maxi setup	
soft start and memorization of last level	
connection : flexible rigid	
environment : storage temperature working temperature	

* Values seized in always correspond to the time needed to go from 0 to 100% : dimmer reads this signal as a slope (or speed) of constant dimming
Ex. : to go from 50% to 100% in 30 minutes © rate 60 minutes to go from 0 to 100% that is to say 30 minutes to go from 50 to 100%

Dimming principle

Only one button is needed for dimming controls (increasing, decreasing) and switching on and off.
Quick push on button for switch on and off (principle of latching relay). Start always on last memorized level
Dimming is obtained by maintaining push button. A new push on button will invert the dimming sense.

Functions	ENO^{012}	$E^{\prime 2} \mathrm{NO}^{0 \mathrm{~A}}$	$\mathrm{N}^{10^{2}}$	$\mathrm{N}^{10^{08}}$	
Power indication LED			-	-	red LED switches on to indicate 230V supply
Protection against overheating	-	-	-		integrated electronic protection. By overheating, the available power and luminosity are reduced. To avoid this phenomenon : separate dimmers with a blanking clip and/or reduce the connected load.
overheating LED			-		yellow LED switches lights on by overheating
protection against short-circuits	-	-	-		an electronic self-resetting system protects dimmers against short-circuits of load
memorization of lighting level	-	-	-	-	last dimming level is memorized last level is restored at next start
softstart function	-	-	-	-	progressive start, increases lifespan of lamps
output contact			-	-	state indicator function EV 102, or loading switch EV 108
functioning in a system - Master (output 1/10V) - slave (input 1/10 V)				-	master products pilot other dimmers or electronic ballasts via 1/10V connection product piloted by $1 / 10 \mathrm{~V}$ connection
ambient lighting level(scenes)		-	-	-	EVN 0041 input, EV 102 and EV 1082 inputs
call scene with push button		-	-	-	dimming at setted speed to obtain called level
priority setting of scene by switch			-	-	dimming at set speed to obtain called level Contact closed = priority setting. Dimmer calls previous level by opening of contact (mode 2)
spacing current	-	-	-	-	push button with LED until 5mA
dimming control on product			-	-	control by 1 or 2 push buttons according to product
Setup					
switching master/slave mini/maxi setup dimming speed				-	EV 102, "local" stand-alone, "slave" or "master" system mini/maxi setup by display, except EV100 (potentiometer) mini 1 to 49 \%, maxi 51 to 99 \% time needed for dimmer starting from normal state to go from 0 to 100 \% by push button ; setup from 4 to 99 seconds
dimming speed at start			-	-	setup from 0 to 99 seconds to go from 0 to 100\%
dimming speed at switch off			-	-	setup from 0 to 99 seconds to go from 0 to 100\%
time needed to obtain a dimming level (scene)**			-	-	setup from 0 to 99 minutes and 59 seconds to go from 0 to 100\%
call scene selection or priority setting scene			-	-	selection scene call (mode 1) or priority scene setting (mode 2) is available for each input
setup of dimming levels (scenes)		-	-	-	setup from 0 to 99\% and by push button

* fuse integrated
** values set always correspond to the time needed to go from 0 to 100% : dimmer reads this signal as a slope (or speed) of constant dimming
Ex. : to go from 50\% to 100% in 30 minutes © rate 60 minutes to go from 0 to 100% that is to say 30 minutes to go from 50 to 100%

Universal dimmer 300W EVN 012

Universal dimmer 500W EVN 004

"master - local - slave" mode switch :

- "master" can pilot other EV 100 or EV 102 via output $1 / 10 \mathrm{~V}$
- "local" stand alone functioning of product
- "slave" product piloted by input signal of connection $1 / 10 \mathrm{~V}$

1/10V pilot dimmer EV 108 (with scene / input)

Input E1 and E2 can call 2 ambient levels :

- control by pushbutton : requested level is applied out of respect for transition speed setted up
- control by switch : requested level is applied override according to transition speed setted up
When 2 inputs are controlled at the same time, a third level becomes available by override (only by setup : mode 2)
Dimming controls by pushbutton have no effect when override is active.

Association of dimmer EV 102 with EV 102

(1) switch mode in position "master" = output $1 / 10 \mathrm{~V}$.
(2) switch mode in position "slave" = input $1 / 10 \mathrm{~V}$ (in this position only priority settings with E1 and E2 are available)

Remark : It is possible to extract temporarily a product from system by switching from "slave" to "local".

Use of input E1 and E2
(call of presetted levels)
Inputs E1 and E2 allow to call 2 or 3 presetted ambient lighting levels. Call of levels can be done normally with pushbutton (impulse 400 ms) or by priority setting with switch or
automation (maintained contact).
Setup mode 1 or 2 allows to
discriminate behaviour of dimmer by cancellation of priority setting.

- mode 1 (by default), corresponds to
normal use.
- Control by pushbutton, called level is
applied out of respect of setted up
transition. Dimmer still reacts to other
controls applied.
- Switch control, called level is applied by priority setting out of respect of
setted up transition.
By cancellation of priority setting lighting remains at the same level as long as no other control is given.
- mode 2 particularly adapted for override. Same behaviour as above by call of level.
By desactivation of override, dimmer set back to the preceding state. In that mode, when the 2 entries are simultaneously active, a 3rd level becomes available in override $(\mathrm{E} 1+\mathrm{E} 2=\mathrm{E} 3)$

Parameter settings for dimmers EV 102 and EV 108

parameter	functions	default value	possible value
Ei	ambient level input E1	0 \%	$0 . .99$ \%
EI	ambient level input E2	99 \%	$0 . .99$ \%
EI	ambient level input E3 $=$ E1 + E2	50 \%	$0 . .99$ \%
910	dimming speed from 0 to 99%	4"	4" ..99"
91	mini lighting level	1 \%	$1 . .49 \%$
\bigcirc	maxi lighting level	99 \%	51 ..99\%
9	dimming speed at start	0 "	0" ..99"
97	dimming speed at stop	0 "	0" ..99"
9	time to reach ambient level E1	0' - 0"	$\begin{aligned} & 0^{\prime} . .99^{\prime} \\ & \text { et } 59 " \end{aligned}$
P6	use mode for input E1 : - 1 = call of ambient level, $-2=$ priority setting	mode 1	mode 1 mode 2
\square	time to reach ambient level E2	0' - 0"	$\begin{aligned} & 0^{\prime} . .99^{\prime} \\ & \text { et } 59 " \end{aligned}$
P昌	use mode for input E2 : - 1 = call of ambient level, $-2=$ priority setting	mode 1	mode 1 mode 2
9	time to reach ambient level E3	0' - 0'	$\begin{aligned} & 0^{\prime} . .99^{\prime} \\ & \text { et 59" } \end{aligned}$

Dimming parameters

Choice of function :

Timing diagram of different modes

A. Basic mode

B. Prewarning mode

C. Double delay mode

D. Double delay + prewarning mode

Wiring diagram

Press shortly a bell push to switch on the lights. After an adjustable time T the lights switch off automatically.

A signal (blink) appears before the end of the lighting period.

Press shortly a bell push to switch on the lights. After an adjustable time T the lights switch off automatically. If you press the push button more than 3 seconds, a time lag of one hour begins.

Description

Energymeters are aimed to measure the active energy consumed by an installation. They permit to have under control the real cost of an installation and to divide the consumption between the different appliances.

Characteristics

- class B
- accuracy 1\%
- energy readout: 7 digits
- backlighted display
- indication of instantaneous power consumption
- total / partial counter
- pulsed output
- unlimited saving of measures
- LED flashing according to consumption
- option: tariff 1 / tariff 2.
- three phases energymeters are adapted to all kind of networks
- display indication in case of bad wiring.

Complies to EN 50470-3

	Designation	Characteristics	Width qty.	Pack	Cat. Ref.
	Single phase - direct 32A	voltage 230 V AC $50 / 60 \mathrm{~Hz}$ single tariff without pulsed output	1	1	EC050
Enc EC050	Single phase - direct 63A	```voltage 230V AC 50 / 60Hz starting current = 40mA base current = 10A max current = 63A```			
		with pulsed output and total / partial	3	1	EC150
		with pulsed output, total / partial counter and 2 tariffs	3	1	EC152
$\phi+\geqslant 0$	Three phase - direct 63A	$\begin{aligned} & \text { voltage } 230 / 400 \mathrm{~V} \text { AC } 50 / 60 \mathrm{~Hz} \\ & \text { starting current }=40 \mathrm{~mA} \\ & \text { base current }=10 \mathrm{~A} \\ & \text { max current = 63A } \end{aligned}$			
EC350		with pulsed output and total / partial	4	1	EC350

Technical characteristics

	EC050	EC150	EC152	EC350
Electrical characteristics				
Voltage	230V AC +/- 15\%			230V AC +/-15\%, 400V AC +/- 15\%
Frequency	$50 / 60 \mathrm{~Hz}$			
Consumption	7VA, 1W	< 10VA and 1W		<10VA and 3W
Metrological data				
Connection	direct			
Display	$5+1$ digits	$6+1$ digits		$7+1$ digits
Accuracy	1\%, class 1 IEC61036	1\%, class B EN 50 470-3		
1 max	32A direct	63A direct		
I starting	20 mA	40 mA		
Base current	10A	10A		
Metrological LED				
LED	6000 blinking / kWh	1000 blinking / kWh		
Pulsed output				
Pulsed output	no	1 pulse $=100 \mathrm{~Wh} / 100 \mathrm{~ms} / 20-30 \mathrm{~V}$ DC max (except on KNX meters)		
Tariff				
Tariff	1	1	2	1
Mechanical characteristics				
Width	1	3		4
Protection degree	IP20	IP20, IP51 (front part)		
Storage temperature	-25 to $+70^{\circ} \mathrm{C}$	-20 to $+70^{\circ} \mathrm{C}$		
Operating temperature	-10 to $+45^{\circ} \mathrm{C}$	-10 to $+55^{\circ} \mathrm{C}$		
Connection capacity	rigid: 1 to $6 \mathrm{~mm}^{2}$ flexible: 1 to $4 \mathrm{~mm}^{2}$	rigid: 1,5 to $16 \mathrm{~mm}^{2}$ flexible: 1 to $16 \mathrm{~mm}^{2}$		

Connection diagram

insysta ${ }^{\text {T" }}$

vogue technik

Hager India presents you with insysta™ - an innovative Indian fusion of their well-known French brand "systo". Admire Fashion of France, Experience German Engineering, and Feel Proud of Made in India with insysta ${ }^{\text {TM }}$.
insysta ${ }^{\text {TM }}$ is the right choice of switching systems to enhance the decor of your living space. Combined with KNX automation modules \& electronics, insysta ${ }^{\text {TM }}$ brings you fashionable \& sophisticated switching systems! Inspired by nature, insysta™ offers fashionable switch plates made of natural materials like oak wood, glass, stainless steel, and plastic.

08	Page	08	Page
6AX switches	320	Volume controller	327
10AX switches	320	Cover \& grid plates - Plastic	328
16AX switches	320	Cover plates - Real material	329
20AX switches	321	Grid plates - Real material	330
25A motor starter switches	321	Wall Boxes	331
20A / 32A Double Pole switches	321		
Push button	322		
Sockets	322		
Regulators \& dimmers	323		
Data sockets	323		
USB socket	323		
VDI module	324		
Special application	324		
KNX Push buttons	325		
Modular motion detector	325		
DND / MMR	326		
Hotel card unit	326		
Shaver socket	327		
Skirting light	327		
Buzzer	327		

6AX switches

Description

- Complies with IS 3854 : 1997
- Guaranteed for 1,00,000 switching operations
- Long life LED with 50,000 burning hours
- 'X' rated - no need to derate for fluorescent loads
- Terminal screws are backed out and captive
- Available with LED light indicator in rocker
- Laser marking

Description	Module size	Cat Ref.
1 way glossy white	1	WSNSW11
1 way glossy white with LED	1	WSNSL11
1 way anthracite	1	WSNSW11A
1 way anthracite with LED	1	WSNSL11A
2 way glossy white	1	WSNSW21
2 way anthracite	1	WSNSW21A

WSNSW11

10AX switches

Description

- Complies with IS $3854: 1997$	- Terminal screws are backed out and captive
- Guaranteed for $1,00,000$ switching operations	- Clearly marked technical and installation information (L-Line, N-Neutral)

- 'X' rated - no need to derate for fluorescent loads
- Laser marking

16AX switches

Description

- Complies with IS 3854 : 1997 - Long life LED with 50000 burning hours
- Guaranteed for 1,00,000 switching operations
- Terminal screws are backed out and captive
- ' X ' rated - no need to derate for fluorescent loads
- Clearly marked technical and installation information (L-Line, N-Neutral)
- Available with LED indicator in rocker

		Description	Module size	Cat Ref.
	-	1 way glossy white	1	WSNSW51
1		1 way glossy white with LED	1	WSNSL511
0		1 way anthracite	1	WSNSW51A
		1 way anthracite with LED	1	WSNSL51A
		2 way glossy white	1	WSNSW61
	-	2 way anthracite	1	WSNSW61A

WSNSW61

20AX switches

Description

- Complies with IS 3854 : 1997 - Terminal screws are backed out and captive
- Guaranteed for 1,00,000 switching operations
- 'X' rated - no need to derate for fluorescent loads
- Clearly marked technical and installation information (L-Line, N-Neutral)
- Long life LED with 50000 burning hours

Abstract

Description Module size Cat Ref. | 1 way glossy white | 1 | WSNSW71 |
| :--- | :--- | ---: |
| 1 way glossy white with LED | 1 | WSNSL71 |
| 1 way anthracite | 1 | WSNSW71A |
| 1 way anthracite with LED | 1 | WSNSL71A |

WSNSL71

25A motor starter switches

Description

- Complies with IS 13947 - Terminal screws are backed out and captive
- Guaranteed for 1,00,000 switching operations - Clearly marked technical and installation information (L-Line, N-Neutral)
- 25 Amp maximum operating current
- Laser marking

Description	Module size
glossy white	
anthracite	3

20A / 32A Double Pole switches

Description

- Complies with IS 3854 : 1997	- Terminal screws are backed out and captive
- Guaranteed for 1,00,000 switching operations	- Clearly marked technical and installation information (L-Line, N-Neutral)
- 'X' rated - no need to derate for fluorescent loads	- Laser marking

- Long life LED with 50000 burning hours

Description	Module size	Cat Ref.
20A DP 1 way glossy white with LED	2	WSNSW81
20A DP 1 way anthracite with LED	2	WSNSW81A
32A DP 1 way glossy white with LED	2	WSNSL92
32A DP 1 way anthracite with LED	2	WSNSL92A

WSNSW81

Push button

Description

- Complies with IS 3854 : 1997 - Terminal screws are backed out and captive
- Guaranteed for 1,00,000 switching operations - Clearly marked technical and installation information
- Available with LED light indicator in rocker
- Long life LED with 50000 burning hours

	Description	Module size	Cat Ref.
	6A glossy white	1	WSNBP11
4	6A glossy white with Indicator	1	WSNBP21
	6A glossy white	2	WSNBP12
	6A glossy white with Indicator	2	WSNBP22
WSNBP11	6A anthracite	1	WSNBP11A
	6A anthracite with Indicator	1	WSNBP21A
	6A anthracite	2	WSNBP12A
	6A anthracite with Indicator	2	WSNBP22A

Sockets

Description

- Complies with IS 1293: 2005
- Multistandard socket supports 17 different plugs
- Euro \& US plugs accepted
- Clearly marked technical and installation information (L-Line, N-Neutral)
- Safety shutter included
- Laser marking
- Terminal screws are backed out and captive

Regulators \& dimmers

Description

- Fan regulator complies with IS 11037:1984 - Clearly printed symbol to identify module function
- 360 deg rotary type fan regulator

Laser marking

- Fan regulators and Dimmers with inbuilt fuse for extra safety for user

	Description	Module size	Cat. Ref.
	100W glossy white fan regulator	1	WSNFC11
	120W glossy white fan regulator	2	WSNFC22
	400W glossy white incandescent rotary dimmer	1	WSNDM11
	1000W glossy white incandescent rotary dimmer	2	WSNDM22
	100W anthracite fan regulator	1	SNFC11A
WSNFC22	120W anthracite fan regulator	2	WSNFC22A
	400W anthracite incandescent rotary dimmer	1	WSNDM11A
	1000W anthracite incandescent rotary dimmer	2	WSNDM22A

Data sockets

Description

- Single RJ11 and RJ45 with label holder \& spring operated safety shutters for
- Clearly printed symbol to identify module function dust protection when not in use
- Laser marking
- International jacks for high speed data transmission

USB socket

Description

- 1.2 amp charging for portable devices
- Blue LED illuminates when charging
- Full charge indication
- Compatibility with all smartphones
- Clearly marked technical and installation information
- Laser marking

	Description	Module size	Cat. Ref.
\geq	glossy white USB Port	1	WSNDS51
	glossy white USB charger	2	WS110
	anthracite USB Port	1	WSNDS51A
	anthracite USB charger	2	WS110N
WSNDS51	2A glossy white USB charger	1	WSNDS61
	2A anthracite USB charger	1	WSNDS61A

VDI module \& accessories

Description

- Wide range of communication sockets for commercial and residential applications
- Laser marked information on terminals

WSNDT11

WSNDS71

WSNDT31

Description	Module size	Cat Ref.
glossy white HDMI Port	1	WSNDT21
glossy white 3x female RCA AV Connector	1	WSNDT31
glossy white female HD VGA 15AV Connector	1	WSNDT42
glossy white Co-Axial TV socket	1	WSNDT11
glossy white cord outlet	1	WSNDS71
glossy white blanking plate	1	WSNBK11
anthracite HDMI Port	1	WSNDT21A
anthracite 3x female RCA AV Connector	1	1
Wnthracite female HD VGA 15AV Connector	1	WSNDT42A
anthracite Co-Axial TV socket	1	WSNDT11A
anthracite cord outlet	WSNDS71A	
anthracite blanking plate	WSNBK11A	

Special application

Description

Switch complies with IS 3854 : 1997
RAL: RD3G023

- Socket complies with IS 1293 : 2005
- Terminal screws are backed out and captive
- Guaranteed for 1,00,000 operations
- Clearly marked technical and installation information

	Description	Module size	Cat Ref.
	6AX 1 way Switch Red	1	WSNSW11R
1	16AX 1 way Switch Red	1	WSNSW51R
1	3 Pin		
	6-13A Multistand Socket Red	2	WSNSK22R
	6-16A 3pin Socket Red	2	WSNSK42R
WSNSW11R	6-16A 3pin Socket Red	3	WSNSK53R
	5 Pin		
	6A 5 pin Universal Socket Red	2	WSNSK62R

KNX Push buttons

Description

- Complies with EN 60669-2-1 \& EN 50428
- Compatible with KNX based home automation solutions for Light ON/OFF,
- Supports system link, easy Link Dimming, Blinds UP/DOWN and opareting light scenes

WST316

Modular motion detector

Description

- Ideal for indoor $230 \mathrm{~V} \pm 10 \%, 50 \mathrm{~Hz}$ application
- Compact fluorescent lamp (CFL): upto 150W
- IP 20
Fluorescent tubes: upto 500 VA
- Brightness threshold : 5-800 lux
- Time delay: 1 s - 30 mn

Cat Ref.	Module size
	2
white modular motion detector	2
antracite modular motion detector	

DND / MMR

Description

- Compact size DND / MMR corridor unit with Occupancy indicator in bell push
- Connections are all made with terminals, there are no LED wires to fit
- Guest Room Device - interlocked 2way switches

Hotel card unit

Description

Integrated switch delay timer upto 1 min and 10A AC1 relay
Suitable for $54 \times 86 \mathrm{~mm}$ key fob
Blue position indicator

Description Module size Cat Ref.
glossy white systo hotel key card $\quad 2 \quad$ WS055

WS055

Shaver socket

Description

- Output power: 20VA
- Output volt: 115 \& 230 AC 50 HZ
- Shaver socket features double wound transformer for dual voltage operation
- Prefitted 4M cover and grid plate

	Description	Module size
glossy white shaver socket	4	

Skirting light

Description

- No. of LEDs: 3

Current : 40mA (max)

	Description	Module size	Cat Ref.
$\underline{\square}$	glossy white skirting light with white LED	2	WSNHS52
=	anthracite skirting light with white LED	2	WSNHS52A

WSNHS52

Buzzer

Volume controller

Description

	- Speaker: $8 \Omega, 3 \mathrm{~W}$ - No. of Speaker: 2	Module size
	Description	

Cover \& grid plates - Plastic

Description

- Made from fire retardant UV stabilised high performance plastic
- Cover plates are supplied with a protective removable plastic film fitted
- Cover plate compensation to adjust with uneven wall surfaces
Description \quad Module size \quad Cat Ref.

Glossy White		
	1	WSNCG1
WSNCG2		
WSNCG3		
WSNCG		
	3	WSNCG
WSNCG6		
WSNCG8		
WSNCGS8		
WSNCG12		
WSNCG18		

WSNCG1A

Anthracite	1	WSNCG1A
WSNCG2A		
WSNCG3A		
WSN		
	3	WSNCG4A
WSNCG6A		
WSNCG8A		
WSNCGS8A		
WSNCG12A		

Aluminium

1	WSNCG1S
2	WSNCG2S
3	WSNCG3S
4	WSNCG4S
6	WSNCG6S
8	WSNCG8S
8	WSNCGS8S
12	WSNCG12S
18	WSNCG18S

Cover plates - Real material

Description

- German manufactured real material cover plates
- Thickness of real material: 3 mm
- Fashioned in France, inspired by nature

Stainless steel grade: 1.4301

- Elegant, luxury feel to enhance your home

White \& black glass finish: hardened and polished with chamfered edges

- Individually sealed in a protective poly bag

	Description	Module size	Cat Ref.
	White Glass		
		1	WSNCG1GW
		2	WSNCG2GW
		3	WSNCG3GW
		4	WSNCG4GW
		6	WSNCG6GW
		8	WSNCG8GW
WSNCG1GW		8	WSNCGS8GW
		12	WSNCG12GW
	Black Glass		
		1	WSNCG1GB
		2	WSNCG2GB
		3	WSNCG3GB
		4	WSNCG4GB
		6	WSNCG6GB
		8	WSNCG8GB
		8	WSNCGS8GB
WSNCG1GB		12	WSNCG12GB
	Brushed Steel		
		1	WSNCG1BS
		2	WSNCG2BS
		3	WSNCG3BS
		4	WSNCG4BS
		6	WSNCG6BS
		8	WSNCG8BS
		8	WSNCGS8BS
WSNCG1BS		12	WSNCG12BS

Cover plates - Real material

	Description	Module size	Cat Ref.
	Bog Oak Wood		
		1	WSNCG1WEO
		2	WSNCG2WEO
		3	WSNCG3WEO
		4	WSNCG4WEO
		6	WSNCG6WEO
		8	WSNCG8WEO
		8	WSNCGS8WEO
WSNCG1WEO		12	WSNCG12WEO

Grid plates - Real material

Description

Made from fire retardant UV stabilized high performance PC

- Available in various module sizes from 1-12 modules

	Description	Module size	Cat Ref.
	Grid Plate - 1 module	1	WSNG1
	Grid Plate - 2 module	2	WSNG2
	Grid Plate - 3 module	3	WSNG3
,	Grid Plate - 4 module	4	WSNG4
	Grid Plate - 6 module	6	WSNG6
WSNG3	Grid Plate - 8 module (Horizontal)	8	WSNG8
	Grid Plate - 8 module (Square)	8	WSNG8S
	Grid Plate - 12 module	12	WSNG12

insysta ${ }^{\text {TM }}$

Wall Boxes

Description
Range of flush mounting boxes to suite with cover plate range - Protection of Floating clamp

- Bright, galvanised, chromium free protective coating

M3.5 combi-head earthing screw

- Individually sealed in protective poly bag

Thickness:
$1-4 \mathrm{M}-0.8 \mathrm{~mm}$
$6-18 \mathrm{M}-1 \mathrm{~mm}$

WSNMB3

Description	Module size	Cat Ref.
Metal Mounting Boxes $1 \& 2$	2	WSNMB2
Metal Mounting Boxes 3 module	3	WSNMB3
Metal Mounting Boxes 4 module	4	WSNMB4
Metal Mounting Boxes 6 module	6	WSNMB6
Metal Mounting Boxes 8 module (Horizontal)	8	WSNMB8H
Metal Mounting Boxes 8 module (Square)	8	WSNMB8R
Metal Mounting Boxes 12 module	12	WSNMB12
Metal Mounting Boxes 18 module	18	WSNMB18

Switches

1 Module

1Module with indicator

2 Module

2 Module with indicator

Sockets

2 Pin Socket 1 Module

3 Pin Socket 2 Module

Universal

3Pin Socket 2 Module

3Pin Socket 3 Module

Dimmers \& Fan regulators

Data sockets

Blanking plate

Cover plates

1 Module

2 Module
 (

3 Module

4 Module

18 Module

6 Module

8 Module-L

12 Module

8 Module-SQ

Switches

One way

Two way

Bell switch

Double pole

Dimmer with switch

Fan regulator with switch

Telephone Outlet - RJ11

insysta ${ }^{\text {TM }}$ vogue technik

An innovative Indian fusion of Hager's Frence brand "systo", provides the state of the art solution to your wiring accessories need.

Nature never fails to inspire and that's why this solution brings you fashionable real material cover plate options in Wood, Glass, Stainless Steel and Plastic.

Cat. ref.	Page No.								
A		BFC480E	217	EE860	294	ESC465	260	HECO 40 H	89
AD956Y	208	BFH480E	217	EE870	294	ESC466	260	HEC041H	89
AD960Y	208	BTC380E	217	EE880	282	ETC440	260	HEC125H	89
AD966Y	208	BTC480E	217	EE883	282	ETC463	260	HEC126H	89
AD970Y	208	BTH380E	217	EENOO3	276	EV102	305	HEC250H	89
AD975Y	208	BTH480E	217	EEN100	276	EV108	306	HEC251H	89
AD982Y	208	C		EG003U	274	EVN004	304	HED400H	92
AD990Y	208	CC216Y	206	EG005	274	EVN012	304	HED401H	92
ADC206Y	210	CC225Y	206	EG007	274	H		HED630H	92
ADC210Y	210	CD225Y	206	EG103E	272	HBA125H	83	HED631H	92
ADC216Y	210	CD240Y	206	EG293B	272	HBA126H	83	HEE800H	94
ADC225Y	210	CD263Y	206	EH011	270	HBA127H	83	HEE801H	94
ADC232Y	210	CD284Y	206	EH111	270	HBA128H	83	HEE970H	94
ADC240Y	210	CD425Y	206	EH711	270	HBA160H	83	HEE971H	94
ADC263Y	210	CD440Y	206	EH771	270	HBA161H	83	HEF980H	97
ADC416Y	210	CD463Y	206	EKS301B	189	HBB161H	86	HEF981H	97
ADC425Y	210	CD484Y	206	EKS302B	189	HBB251H	86	HEF990H	97
ADC432Y	210	CE225Y	206	EKS303B	189	HBD401H	92	HEF991H	97
ADC440Y	210	CE240Y	206	EKS304B	189	HBD631H	92	HEG200H	88
ADC463Y	210	CE263Y	206	EKS305B	189	HCA125Z	83	HEG250H	88
ADH956	209	CE284Y	206	EKS306B	189	HCA126Z	83	HHA016Z	82
ADH960	209	CE425Y	206	EKS309B	189	HCA160Z	83	HHA017Z	82
ADH966	209	CE440Y	206	EKS312B	189	HCA161Z	83	HHA020Z	82
ADH970	209	CE463Y	206	EKS315B	189	HCB250Z	86	HHA021Z	82
ADH975	209	CE484Y	206	EKS320B	189	HCB251Z	86	HHA025U	82
ADH982	209	CF225Y	206	EKS330B	189	HCD400H	92	HHA025Z	82
ADH990	209	CF240Y	206	EKT406SG	191	HCD401H	92	HHA026U	82
AE956Y	208	CF263Y	206	EKT410SG	191	HCD630H	92	HHA026Z	82
AE960Y	208	CF425Y	206	EKT410TG	191	HCD631H	92	HHA032Z	82
AE966Y	208	CF440Y	206	EKT416SG	191	HCE800H	94	HHA033Z	82
AE970Y	208	CF463Y	206	EKT416TG	191	HCE801H	94	HHA040U	82
AE975Y	208	CF484Y	206	EKT420SG	191	HCE970H	94	HHA040Z	82
AE982Y	208	CH225J	207	EKT420TG	191	HCE971H	94	HHA041U	82
AE990Y	208	CH240J	207	EKT425SG	191	HCF980H	97	HHA041Z	82
AEC206Y	210	CH263J	207	EKT425TG	191	HCF981H	97	HHA050Z	82
AEC210Y	210	CH425J	207	EKT432SG	191	HCF990H	97	HHA051Z	82
AEC216Y	210	CH440J	207	EKT432TG	191	HCF991H	97	HHA063U	82
AEC225Y	210	CH463J	207	EKT440TG	191	HDA016Z	82	HHA063Z	82
AEC232Y	210	CQ225J	207	EKT610SG	191	HDA017Z	82	HHA064U	82
AEC240Y	210	CQ240J	207	EKT610TG	191	HDA020Z	82	HHA064Z	82
AEC263Y	210	CQ263J	207	EKT616SG	191	HDA021Z	82	HHA080U	82
AEC416Y	210	CQ425J	207	EKT616TG	191	HDA025U	82	HHA080Z	82
AEC425Y	210	CQ440J	207	EKT620SG	191	HDA025Z	82	HHA081U	82
AEC432Y	210	CQ463J	207	EKT620TG	191	HDA026U	82	HHA081Z	82
AEC440Y	210	CZ001	220	EKT625SG	191	HDA026Z	82	HHA100U	82
AEC463Y	210	E		EKT625TG	191	HDA032Z	82	HHA100Z	82
AF956Y	208	EC050	316	EKT632SG	191	HDA033Z	82	HHA101U	82
AF960Y	208	EC150	316	EKT632TG	191	HDA040U	82	HHA101Z	82
AF966Y	208	EC152	316	EKT640SG	191	HDA040Z	82	HHA125U	82
AF970Y	208	EC350	316	EKT640TG	191	HDA041U	82	HHA125Z	82
AF975Y	208	EE110	276	EKT663TG	191	HDA041Z	82	HHA126U	82
AF982Y	208	EE180	274	EMN005	306	HDA050Z	82	HHA126Z	82
AF990Y	208	EE181	274	EPN050	266	HDA051Z	82	HHA160U	82
AFC216Y	210	EE600	296	EPN051	266	HDA063U	82	HHA160Z	82
AFC225Y	210	EE610	296	EPN052	266	HDA063Z	82	HHA161U	82
AFC232Y	210	EE702	276	EPN053	266	HDA064U	82	HHA161Z	82
AFC240Y	210	EE804A	282	EPN510	263	HDA064Z	82	HHB200Z	86
AFC263Y	210	EE805A	282	EPN515	263	HDA080U	82	HHB201Z	86
AFC416Y	210	EE806	294	EPN520	263	HDA080Z	82	HHB250Z	86
AFC425Y	210	EE807	289	EPN525	263	HDA081U	82	HHB251Z	86
AFC432Y	210	EE808	289	EPN540	263	HDA081Z	82	HHD400U	91
AFC440Y	210	EE810	289	ESC080	260	HDA100U	82	HHG063H	88
AFC463Y	210	EE811	289	ESC225	260	HDA100Z	82	HHG100H	88
AFH956	209	EE812	289	ESC227	260	HDA101U	82	HHG125H	88
AFH960	209	EE815	289	ESC240	260	HDA101Z	82	HHG160H	88
AFH966	209	EE816	289	ESC263	260	HDA125U	82	HHG200H	88
AFH970	209	EE820	294	ESC340	260	HDA125Z	82	HHG250H	88
AFH975	209	EE825	294	ESC363	260	HDA126U	82	H1403I	164
B		EE827	294	ESC425	260	HDA126Z	82	H1405I	164
BDC380E	217	EE830	294	ESC440	260	HDA160U	82	H1451I	164
BDC480E	217	EE840	294	ESC442	260	HDA160Z	82	H1452I	164
BDH380E	217	EE850	294	ESC443	260	HDA161U	82	H1454I	164
BDH480E	217	EE855	294	ESC463	260	HDA161Z	82	H1456I	164

Cat. ref.	Page No.									
H1458I	164	HNG125H	88	HYD011H	93	KZN021	71	NBN206N	196	
H1460,	164	HNG160H	88	HYD012H	93	KZN023	71	NBN210N	196	
H\|462		164	HNG200H	88	HYD014H	93	KZN024	71	NBN216N	196
H\|464		164	HNG250H	88	HYD015H	93	L		NBN220N	196
HIB4121	174	HR500	222	HYE019H	96, 96, 98	L501PV	249	NBN225N	196	
HIB416I	174	HR502	222	HZ160I	164	L502PV	249	NBN232N	196	
HIB425I	174	HR510	222	HZ163MI	164	LF300G	243	NBN240N	196	
HIB440I	174	HR741	222	HZ164MI	164	LF301G	243	NBN250N	196	
HIB463I	174	HR742	222	HZC101I	164	LF302G	243	NBN263N	196	
HIB480I	174	HR743	222	HZC1021	164	LF302PV	249	NBN306N	196	
HIB490I	174	HR744	222	HZC105I	164	LF303PV	249	NBN310N	196	
HIB491I	174	HR745	222	HZC106I	164	LF304G	243	NBN316N	196	
HIB492I	174	HXA001H	84, 87	HZC2021	164, 174	LF304PV	249	NBN320N	196	
HLF180S	197	HXA004H	87	HZC204I	164, 174	LF306G	243	NBN325N	196	
HLF190S	197	HXA011H	84, 87	HZC206I	164, 174	LF306PV	249	NBN332N	196	
HLF199S	197	HXA014H	84, 87	HZIOO2I	164	LF308G	243	NBN340N	196	
HLF280S	197	HXA015H	84, 87	HZIOO3I	164	LF308PV	249	NBN350N	196	
HLF290S	197	HXA021H	84, 87	HZI2011	174	LF310G	243	NBN363N	196	
HLF299S	197	HXA024H	84, 87	HZI2021	174	LF310PV	249	NBN406N	196	
HLF380S	197	HXA030H	85	HZI2031	174	LF312G	243	NBN410N	196	
HLF390S	197	HXA031H	85	HZI204I	174	LF312PV	249	NBN416N	196	
HLF399S	197	HXA035H	84	HZI205I	174	LF316G	243	NBN420N	196	
HLF480S	197	HXB030H	87	HZI8111	174	LF316PV	249	NBN425N	196	
HLF490S	197	HXB031H	87	HZI8121	174	LF320G	243	NBN432N	196	
HLF499S	197	HXB042H	87	HZ1910	174	LF320PV	249	NBN440N	196	
HNA025U	83	HXB065H	87	HZ19111	174	LF325G	243	NBN450N	196	
HNA026U	83	HXC001H	90	J		LF325PV	249	NBN463N	196	
HNAO4OU	83	HXC001H	93	JK1XKLS6	55	LF332G	243	NCN100N	196	
HNA041U	83	HXC001H	95	JN2B00004S16	54	LF332PV	249	NCN101N	196	
HNA063U	83	HXC004H	90	JN2B00006S16	54	LF402G	243	NCN102N	196	
HNA064U	83	HXC004H	93	JN2B00008S16	54	LF404G	243	NCN103N	196	
HNA080U	83	HXC004H	95	JN2B00010S16	54	LF406G	243	NCN104N	196	
HNA081U	83	HXC011H	90	JN2B00012S16	54	LF408G	243	NCN106N	196	
HNA100U	83	HXC011H	93	JN2B00016S16	54	LF410G	243	NCN110N	196	
HNA101U	83	HXC014H	90	JN2L2503MH6	55	LF412G	243	NCN116N	196	
HNA125U	83	HXC014H	93	JN4B00004S16	54	LF416G	243	NCN120N	196	
HNA126U	83	HXC015H	90	JN4B00006S16	54	LF420G	243	NCN125N	196	
HNA160U	83	HXC015H	93	JN4B00008S16	54	LF425G	243	NCN132N	196	
HNA161U	83	HXC021H	90	JN4B00010S16	54	LF432G	243	NCN140N	196	
HNB100U	86	HXC021H	93, 95, 98	JN4B00012S16	54	LF440G	243	NCN150N	196	
HNB101U	86	HXC024H	90, 93, 95, 98	JN4B00016S16	54	LF445G	243	NCN163N	196	
HNB125U	86	HXC030H	90	JN4L4003MH6	55	LF450G	243	NCN200N	196	
HNB126U	86	HXC031H	90	JN8B00004S16	54	LS502	243	NCN201N	196	
HNB160U	86	HXC035H	90	JN8B00006S16	54	LS601	243	NCN202N	196	
HNB161U	86	HXC042H	90	JN8B00008S16	54	LS602	243	NCN203N	196	
HNB200U	86	HXC065H	90	JN8B00010S16	54	M		NCN204N	196	
HNB201U	86	HXD030H	93	JN8B00012S16	54	ML506J	198	NCN206N	196	
HNB250U	86	HXD031H	93	JN8B00016S16	54	ML510J	198	NCN210N	196	
HNB251U	86	HXD039H	93	JN8B00202S16	54	ML516J	198	NCN216N	196	
HNCO4OH	89	HXD042H	93	JN8B00204S16	54	ML520J	198	NCN220N	196	
HNC041H	89	HXD065H	93	JN8B00206S16	54	ML525J	198	NCN225N	196	
HNC125H	89	HXE011H	95, 98	JN8B00208S16	54	ML532J	198	NCN232N	196	
HNC126H	89	HXE014H	95, 98	JN8B00210S16	54	ML540J	198	NCN240N	196	
HNC250H	89	HXE015H	95, 98	JN8B00214S16	54	MZ201	220	NCN250N	196	
HNC251H	89	HXEO30H	96	JN8L6303MH6	55	MZ202	220	NCN263N	196	
HND251U	91	HXE031H	96	JN8L8003MH6	55	MZ203	220	NCN300N	196	
HND400H	92	HXE042H	96	K		MZ204	220	NCN301N	196	
HND400U	91	HXE065H	95	KB163N	71	MZ205	220	NCN302N	196	
HND401H	92	HXF001H	98	KB163P	71	MZ206	220	NCN303N	196	
HND401U	91	HXF004H	98	KD163B	71	MZ209	220	NCN304N	196	
HND630H	92	HXFO30H	98	KD263B	71	MZ215	220	NCN306N	196	
HND631H	92	HXF031H	98	KD363B	71	MZ216	220	NCN310N	196	
HNE630H	94	HXF039H	98	KD463B	71	MZN175	220	NCN316N	196	
HNE800H	94	HXF042H	98	KDN163A	71	N		NCN320N	196	
HNE801H	94	HYA014H	85	KDN263A	71	NBN106N	196	NCN325N	196	
HNE970H	94	HYA015H	85	KDN363A	71	NBN110N	196	NCN332N	196	
HNE971H	94	HYA019H	85	KDN463A	71	NBN116N	196	NCN340N	196	
HNF980H	97	HYA033H	85	KF83D	71	NBN120N	196	NCN350N	196	
HNF981H	97	HYB011H	87	KM14N	71	NBN125N	196	NCN363N	196	
HNF990H	97	HYB012H	87, 90	KNX10LH	248	NBN132N	196	NCN400N	196	
HNF991H	97	HYB019H	85, 85, 87	KR50U	71	NBN140N	196	NCN401N	196	
HNG063H	88	HYC011H	90	KW10LH	248	NBN150N	196	NCN402N	196	
HNG100H	88	HYC019H	90	KZ021	71	NBN163N	196	NCN403N	196	

Cat. ref.	Page No.								
NCN404N	196	SBN263N	193	SVN433	254	VYDOOE4	55	VYP16GH	23
NCN406N	196	SBN290N	193	V		VYD00E6	55	VYS04D	20
NCN410N	196	SBN299N	193	VE103L	68	VYD00M2	55	VYS04E	32
NCN416N	196	SBN332N	193	VE103PN	248	VYD00M4	55	VYS04G	20
NCN420N	196	SBN340N	193	VE106L	68	VYDOOM6	55	VYS04P	20
NCN425N	196	SBN363N	193	VE106PN	248	VYF14E	32	VYS06C	20
NCN432N	196	SBN390N	193	VE110L	68	VYF16E	32	VYS06D	20
NCN440N	196	SBN399N	193	VE110PN	248	VYF214D	29	VYS06E	32
NCN450N	196	SBN432N	193	VE112L	68	VYF214G	29	VYS06G	20
NCN463N	196	SBN440N	193	VE112PN	248	VYF214P	29	VYS06P	20
NDN100N	196	SBN463N	193	VE118L	68	VYF314D	29	VYS08C	20
NDN101N	196	SBN490N	193	VE118PN	248	VYF314G	29	VYS08D	20
NDN102N	196	SBN499N	193	VE212L	68	VYF314P	29	VYS08E	32
NDN103N	196	SF440	193	VE212PN	248	VYF414D	29	VYS08G	20
NDN104N	196	SF463	193	VE218L	68	VYF414G	29	VYS08P	20
NDN106N	196	SFT225N	193	VE218PN	248	VYF414P	29	VYS12C	20
NDN110N	196	SFT240N	193	VE312L	68	VYF416D	29	VYS12D	20
NDN116N	196	SFT440N	193	VE312PN	248	VYF416G	29	VYS12E	32
NDN120N	196	SK602	256	VE318L	68	VYF416P	29	VYS12G	20
NDN125N	196	SK603	256	VE318PN	248	VYG04CL	27	VYS12P	20
NDN132N	196	SK606	256	VE412L	68	VYG04DL	27	VYS16C	20
NDN140N	196	SM030	256	VE412PN	248	VYG04DM	27	VYS16D	20
NDN150N	196	SM050	256	VF104PJ	62	VYG06CL	27	VYS16E	32
NDN163N	196	SM100	256	VF104TJ	62	VYG06DL	27	VYS16G	20
NDN200N	196	SM150	256	VF108PJ	62	VYG06DM	27	VYS18C	20
NDN201N	196	SM250	256	VF108TJ	62	VYG08CL	27	VYS18D	20
NDN202N	196	SM500	256	VF112PJ	62	VYG08DL	27	VYS18G	20
NDN203N	196	SP120	225	VF112TJ	62	VYG08DM	27	VYT04CD	21
NDN204N	196	SP150	225	VF118PJ	62	VYG12CL	27	VYT04CH	21
NDN206N	196	SP320	225	VF118TJ	62	VYG12DL	27	VYT04DD	21
NDN210N	196	SPD015D	227	VF212PJ	62	VYG12DM	27	VYT04DH	21
NDN216N	196	SPD040D	227	VF212TJ	62	VYH04DH	22	VYT04E	32
NDN220N	196	SPD040N	227	VF218PJ	62	VYH04E	32	VYT04E	32
NDN225N	196	SPD215D	225	VF218TJ	62	VYH04GH	22	VYT04GH	21
NDN232N	196	SPD415D	225	VF312PJ	62	VYH04PH	22	VYT04PH	21
NDN240N	196	SPN040N	227	VF312TJ	62	VYH06DH	22	VYT06CD	21
NDN250N	196	SPN040R	227	VF412PJ	62	VYH06E	32	VYT06CH	21
NDN263N	196	SPN065N	227	VF412TJ	62	VYH06GH	22	VYT06DD	21
NDN300N	196	SPN065R	227	VS104PJ	62	VYH06PH	22	VYT06DH	21
NDN301N	196	SPN115D	225	VS104TJ	62	VYH08DH	22	VYT06E	32
NDN302N	196	SPN140R	225	VS108PJ	62	VYH08E	32	VYT06GH	21
NDN303N	196	SPN140R	225	VS108TJ	62	VYH08GH	22	VYT06PH	21
NDN304N	196	SPN165R	225	VS112PJ	62	VYH08PH	22	VYT08CH	21
NDN306N	196	SPN203N	226	VS112TJ	62	VYH12DH	22	VYT08DH	21
NDN310N	196	SPN240R	225	VS118PJ	62	VYH12E	32	VYT08E	32
NDN316N	196	SPN240R	225	VS118TJ	62	VYH12GH	22	VYT08E	32
NDN320N	196	SPN265R	225	VS212PJ	62	VYH12PH	22	VYT08GH	21
NDN325N	196	SPN403N	226	VS212TJ	62	VYM02C	30	VYT08PH	21
NDN332N	196	SPN440R	225	VS218PJ	62	VYM04C	30	VYT12CH	21
NDN340N	196	SPN440R	225	VS218TJ	62	VYM06C	30	VYT12DH	21
NDN350N	196	SPN465R	225	VS312PJ	62	VYM08C	30	VYT12E	32
NDN363N	196	SPN504	226	VS312TJ	62	VYM160HM	30	VYT12GH	21
NDN400N	196	SPN505	226	VS412PJ	62	VYM161HM	30	VYT12PH	21
NDN401N	196	SPV025	249	VS412TJ	62	VYM250HM	30	VYT16DH	21
NDN402N	196	SPV025E	249	VYA110C	31	VYM251HM	30	VYT16E	32
NDN403N	196	SPV325	249	VYA120C	31	VYP06DH	23	VYT16GH	21
NDN404N	196	SRA00505	256	VYA220C	31	VYP06E	32	VYVOOE	32
NDN406N	196	SRA01005	256	VYA420C	31	VYP06GH	23	VYVOOM	24, 25, 26
NDN410N	196	SRA01505	256	VYA432C	31	VYP06PH	23	VYV04DL-P	24
NDN416N	196	SRA02005	256	VYA863C	31	VYP08DH	23	VYV04DM2-P	26
NDN420N	196	SRA02505	256	VYB416C	31	VYP08E	32	VYV04DM-P	25
NDN425N	196	SU213	259	VYB432C	31	VYP08GH	23	VYV06DL-P	24
NDN432N	196	SU215	259	VYB832C	31	VYP08PH	23	VYV06DM2-P	26
NDN440N	196	SVN121	254	VYB863C	31	VYP10DH	23	VYV06DM-P	25
NDN450N	196	SVN122	254	$\mathrm{VYC04CH}$	28	VYP10E	32	VYV08DL-P	24
NDN463N	196	SVN123	254	VYC04DF	28	VYP10GH	23	VYV08DM2-P	26
P		SVN124	254	VYC04DH	28	VYP12DH	23	VYV08DM-P	25
P031F	71	SVN126	254	VYC06CH	28	VYP12DM	23	VYV12DL-P	24
P032F	71	SVN129	254	VYC06DH	28	VYP12E	32	VYV12DM2-P	26
S		SVN222	254	VYC08CH	28	VYP12EM	32	VYV12DM-P	25
SB432PV	249	SVN312	254	VYC08DH	28	VYP12GH	23	VYV16DL-P	24
SBN225N	193	SVN332	254	$\mathrm{VYC12CH}$	28	VYP12GM	23	VYV16DM2-P	26
SBN232N	193	SVN352	254	VYC12DH	28	VYP12PH	23	VYV16DM-P	25
SBN240N	193	SVN413	254	VYD00E2	55	VYP16DH	23	VZ016M	248

Cat. ref.	Page No.	Cat. ref.	Page No.	Cat. ref.	Page No.
VZ020D	248	WSNCG3S	328	WSNMB2	331
VZ020M	248	WSNCG3WEO	330	WSNMB3	331
VZ025D	248	WSNCG4	328	WSNMB4	331
VZ025M	248	WSNCG4A	328	WSNMB6	331
VZ032D	248	WSNCG4BS	329	WSNMB8H	331
VZ032M	248	WSNCG4GB	329	WSNMB8R	331
VZ040M	248	WSNCG4GW	329	WSNMS12	321
VZ100i	32	WSNCG4S	328	WSNMS12A	321
VZ101i	32	WSNCG4WEO	330	WSNSK11	322
VZ110i	32	WSNCG6	328	WSNSK11A	322
VZ111i	32	WSNCG6A	328	WSNSK22	322
VZ112i	32	WSNCG6BS	329	WSNSK22A	322
VZ113i	32	WSNCG6GB	329	WSNSK22R	324
VZ120i	32	WSNCG6GW	329	WSNSK32	322
VZ121i	32	WSNCG6S	328	WSNSK32A	322
VZ122i	32	WSNCG6WEO	330	WSNSK42	322
VZ123i	32	WSNCG8	328	WSNSK42A	322
VZ1301	31	WSNCG8A	328	WSNSK42R	324
VZ1311	31	WSNCG8BS	329	WSNSK53	322
VZ1321	31	WSNCG8GB	329	WSNSK53A	322
VZ1331	31	WSNCG8GW	329	WSNSK53R	324
VZ1341	31	WSNCG8S	328	WSNSK62	322
VZ140I	31	WSNCG8WEO	330	WSNSK62A	322
VZ1411	31	WSNCGS8	328	WSNSK62R	324
VZ1421	31	WSNCGS8A	328	WSNSL11	320
VZ1431	31	WSNCGS8BS	329	WSNSL11A	320
VZ144	31	WSNCGS8GB	329	WSNSL511	320
VZ311	68	WSNCGS8GW	329	WSNSL51A	320
VZ794N	62	WSNCGS8S	328	WSNSL71	321
W		WSNCGS8WEO	330	WSNSL71A	321
WS051	325	WSNDS11	323	WSNSL92	321
WS051N	325	WSNDS11A	323	WSNSL92A	321
WS055	326	WSNDS21	323	WSNSW11	320
WS110	323	WSNDS21A	323	WSNSW11A	320
WS110N	323	WSNDS31	323	WSNSW11R	324
WSNBK11	324	WSNDS31A	323	WSNSW21	320
WSNBK11A	324	WSNDS41	323	WSNSW21A	320
WSNBP11	322	WSNDS41A	323	WSNSW31	320
WSNBP11A	322	WSNDS51	323	WSNSW31A	320
WSNBP12	322	WSNDS51A	323	WSNSW51	320
WSNBP12A	322	WSNDS61	323	WSNSW51A	320
WSNBP21	322	WSNDS61A	323	WSNSW51R	324
WSNBP21A	322	WSNDS71	324	WSNSW61	320
WSNBP22	322	WSNDS71A	324	WSNSW61A	320
WSNBP22A	322	WSNDT11	324	WSNSW71	321
WSNCG1	328	WSNDT11A	324	WSNSW71A	321
WSNCG12	328	WSNDT21	324	WSNSW81	321
WSNCG12A	328	WSNDT21A	324	WSNSW81A	321
WSNCG12BS	329	WSNDT31	324	WST312	325
WSNCG12GB	329	WSNDT31A	324	WST312N	325
WSNCG12GW	329	WSNDT42	324	WST312T	325
WSNCG12S	328	WSNDT42A	324	WST314	325
WSNCG12WEO	330	WSNG1	330	WST314N	325
WSNCG18	328	WSNG12	330	WST314T	325
WSNCG18A	328	WSNG2	330	WST316	325
WSNCG18S	328	WSNG3	330	WST316N	325
WSNCG1A	328	WSNG4	330	WST316T	325
WSNCG1BS	329	WSNG6	330	WST322	325
WSNCG1GB	329	WSNG8	330	WST322N	325
WSNCG1GW	329	WSNG8S	330	WST322T	325
WSNCG1S	328	WSNHS12	326	WST324	325
WSNCG1WEO	330	WSNHS12A	326	WST324N	325
WSNCG2	328	WSNHS22	326	WST324T	325
WSNCG2A	328	WSNHS22A	326		
WSNCG2BS	329	WSNHS44	327		
WSNCG2GB	329	WSNHS44A	327		
WSNCG2GW	329	WSNHS52	327		
WSNCG2S	328	WSNHS52A	327		
WSNCG2WEO	330	WSNHS62	327		
WSNCG3	328	WSNHS62A	327		
WSNCG3A	328	WSNHS72	327		
WSNCG3BS	329	WSNHS72A	327		
WSNCG3GB	329	WSNMB12	331		
WSNCG3GW	329	WSNMB18	331		

We are close to you!

North
Delhi \& NCR
Haryana
Uttar Pradesh
Uttarakhand

North
West
Punjab
Chandigarh Himachal Pradesh Jammu \& Kashmir Rajasthan

East
West Bengal
Orissa
Bihar
Jharkhand
Arunachal Pradesh
Assam
Manipur
Meghalaya
Mizoram
Nagaland
Tripura

West
Maharashtra
Gujarat
Goa
Madhya Pradesh
Chattisgarh

South
Tamilnadu
Pondicherry
Karanataka
Kerala
Telangana
Andhra Pradesh

Our network to serve you better

- 150+ Authorised Channel Partners
- 35+ System Integrators
- 25+ Service Centres

Hager Electro Private Limited Corporate Office:
Office No. 504, Pentagon P1
Magarpatta City, Hadapsar
Pune-411013
India
Tel: +91 2041477500
Fax: +91 2041477510
Toll free no.: 18001035440
hagerwow@hager.co.in
hager.co.in

Mumbai Sales Office:
WeWork The Masterpiece
Marol Metro Station
Marol, Andheri East
Mumbai-400059
India
Tel: +91 2249097185

Delhi Sales Office:

B 217 Tower B
DLF Towers, Jasola
New Delhi-110025
India
Tel: +91 1142548644

Kolkata Sales Office: Office \# 506, 5th Floor Shantiniketan Building
8, Camac Street
Kolkata-700017
India

Bengaluru Sales Office
WeWork Galaxy
\# 02A129, 43 Residency Rd
Bengaluru-560025
India

Tel: +91 8044451100

[^0]: Daniel Hager Hager Group CEO

[^1]: HXC014H

[^2]: - Emergency stop command option available

[^3]: HZI910I

[^4]: Manual retransfer to validate on keypad. In retranster sequence from emergency source toppriority soorree,
 the MRT count down is set to 10 seconds (maximum) unless a lower value has been programmed.

[^5]: The switch transfers to new stable position as soon as
 The switch transters to new
 Automatic mode is active.

